
Foundations of gravitational waves and black hole perturbation theory 2020/2021
(NWI-NM125)

Problem sheet #4: Bondi-Sachs coordinates and gravitational waves

Tutorial on Thursday 24 February 2022, 13:30 - 15:15

This tutorial is graded. To get full credits, you only need to hand in Ex. 4.1 (the others are ad-
ditional practice material). Hand in the tutorial before the start of the next tutorial on Thursday
3 March at 13:30. Tutorials received after the deadline will be marked as a 1. If you are not able
to hand in your solutions in person, you can email a scan or photo of your answers to Patricia
(patricia.ribesmetidieri@ru.nl).

A general hint: the expression for the Lie derivative is valid for any derivative operator (including
the partial derivative operator). Choosing the “right” derivative operator can sometimes greatly
simplify intermediate steps.

Exercise 4.1: Asymptotic symmetries in Bondi-Sachs coordinates

Derive the asymptotic symmetry algebra using (conformal) Bondi-Sachs coordi-
nates instead of the universal structure.

Let ξa be any vector field on M and let ξa = gabξ
b. The physical metric perturbation generated

by a diffeomorphism along ξa is γab = Lξgab = 2∇(aξb). Let this vector field ξa extend smoothly

to the conformally completed spacetime M̃ (which is needed to preserve the zeroth-order smooth
structure of M̃) so that ξ̃a = ξa and ξ̃a = g̃abξ

b = Ω2ξa. The corresponding perturbation to the
conformally completed metric is given by

γ̃ab = Ω2γab . (1.1)

a) Show that Eq. (1.1) in terms of ξ̃a is

γ̃ab = 2∇̃(aξ̃b) − 2Ω−1∇̃cΩ ξ̃cg̃ab = 2∇̃(aξ̃b) − 2Ω−1 ncξ̃
cg̃ab . (1.2)

Also show that this equation implies that ξ̃Ω =̂ 0, where ξ̃Ω is the Ω-component of ξ̃a.

b) Next, expand the components of ξ̃a in terms of Ω, e.g. ξ̃u = ξ̃u(0)(u, x
A) + Ωξ̃u(1)(u, x

A) +

O(Ω2), and substitute this into Eq. (1.1). It is common practice to call ξ̃u(0)(u, x
A) = F and

ξ̃A(0)(u, x
A) = Y A. Show that

γ̃uu =̂ 0 (1.3a)

γ̃uΩ =̂ −ξ̃Ω
(1) + ∂uF (1.3b)

γ̃uA =̂ SAB∂uY
B (1.3c)

γ̃ΩΩ =̂ 2ξ̃u(1) (1.3d)

γ̃ΩA =̂ DAF + SAB ξ̃
B
(1) (1.3e)

γ̃AB =̂ 2D(AYB) − 2SAB ξ̃
Ω
(1) (1.3f)

(1.3g)
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and
γ̃aa = 2∂uF − 6ξ̃Ω

(1) + 2DAY
A . (1.4)

Hint: To simplify your intermediate calculations, use early on that Ω = 0 on I.

c) Since the leading order structure at I is fixed, we require γ̃ab =̂ 0. Using this, show that

2D(AYB) − SABDCY
C = 0 and F = f +

1

2
uDAY

A (1.5)

with ∂uf = 0 = ∂uY
A and DA the derivative operator compatible with the unit two-sphere

metric.

d) Bringing together the results from part c), we can conclude that a general BMS vector has the
form ξ̃a = Fna + Y a. We can split this vector field into a vector field χa = fna, responsible
for the supertranslations, and a vector field ζa = u

2DAY
A na+Y a, responsible for the Lorentz

transformations. Show that

α(f) = 0 and α(Y ) = 1
2DAY

A , (1.6)

as expected.

e) Verify explicitly that these vector fields form a closed algebra since for an arbitrary BMS
vector field ξ̃a = Fna + Y a, we find that:[

ξ̃, Y
]a

= −
(
LY f + uLY α(Y )

)
na ∈ b (1.7a)[

ξ̃, g(θ, φ)n
]a

=
(
LY g − α(Y )g

)
na ∈ s (1.7b)

where the second line shows in fact that the supertranslations form a Lie ideal.

f) How does a BMS vector field in physical (u, r, θ, φ) coordinates look? (The answer to this
subquestion should be a very short calculation.)

Additional practice

Exercise 4.2: Supertranslations

Understand how the radiation field and the Bondi mass aspect transform under
a supertranslation.

a) Verify Eq. (5.4) in the Lecture notes using Eq. (5.3). Note that δfCAB refers to O(r) part
in LξgAB.

b) Similarly, show that a supertranslation changes the Bondi mass aspect in the following man-
ner

δfM = f∂uM +
1

4
NABDADBf +

1

2
DAfDBN

AB . (2.1)

You will need to use that the r-component of ξa is given by

ξr =
1

2
DADAf −

1

2r

(
DAfDBC

AB +
1

2
CABDADBf

)
+O(r−2) . (2.2)

c) Take the u-derivative of Eq. (2.1) and show that this result is consistent with taking δf of
the evolution equation in Eq. (4.20) in the Lecture notes.
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Exercise 4.3: Memory effect

The electromagnetic analog of gravitational wave memory is the change in a de-
tector in the asymptotic region after an electromagnetic wave has passed. Instead
of a distortion in the detector, as occurs in the gravitational wave case, you will
show that there is a velocity kick to the charges in the detector.

a) First, show that if the source current in Minkowski spacetime has the following decay towards
null infinity

ρ = jr =
L(u, xA)

r2
+O

(
1

r3

)
(3.1a)

jA = O
(

1

r3

)
(3.1b)

then the electromagnetic field decays as

Er =
W (0)(u, xA)

r2
+O

(
1

r3

)
(3.2a)

Br =
Z(0)(u, xA)

r2
+O

(
1

r3

)
(3.2b)

EA = E
(0)
A (u, xA) +O

(
1

r

)
(3.2c)

BA = B
(0)
A (u, xA) +O

(
1

r

)
. (3.2d)

Hint: A possible approach is to think about the required fall-off in Cartesian coordinates
and use (some of) Maxwell’s equations (specifically, ∇aEa = 4πρ and ∇aBa = 0).

b) Using the Lorentz force

Fa = q
(
Ea + εabcv

bBc
)
, (3.3)

show that the velocity kick experienced by a charged test particle (=detector) with negli-
gible initial velocity following a trajectory of the time translation vector field ∂/∂t so that
(r, θ, φ) = (r0, θ0, φ0), is to leading order given by

|∆~v| = q

mr0

∣∣∣∣∫ ∞
−∞

du E
(0)
A (u, θ0, φ0)

∣∣∣∣ . (3.4)

c) Consider an electromagnetic wave generated by a time-varying dipole moment pa, so that
near I the electric field is given by

Ea =
1

r
∂2
u

(
pa − r̂bpb r̂a

)
+O

(
1

r2

)
, (3.5)

where r̂a is the unit vector in the radial direction. Calculate the induced velocity kick. Repeat
the same calculation, but consider now the slow motion limit, so that the dipole moment is

pa =
∑
k

q(k)v
(k)
a (3.6)

where k runs over all objects with charge q(k) and velocity v
(k)
a .
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