Foundations of gravitational waves and black hole perturbation theory 2020/2021
(NWI-NM125)

Problem sheet #4: Bondi-Sachs coordinates and gravitational waves

Tutorial on Thursday 24 February 2022, 13:30 - 15:15

This tutorial is graded. To get full credits, you only need to hand in Ex. 4.1 (the others are ad-
ditional practice material). Hand in the tutorial before the start of the next tutorial on Thursday
3 March at 13:30. Tutorials received after the deadline will be marked as a 1. If you are not able
to hand in your solutions in person, you can email a scan or photo of your answers to Patricia
(patricia.ribesmetidieri@ru.nl).

A general hint: the expression for the Lie derivative is valid for any derivative operator (including
the partial derivative operator). Choosing the “right” derivative operator can sometimes greatly
simplify intermediate steps.

Exercise 4.1: Asymptotic symmetries in Bondi-Sachs coordinates
Derive the asymptotic symmetry algebra using (conformal) Bondi-Sachs coordi-
nates instead of the universal structure.

Let £ be any vector field on M and let &, = gq&°. The physical metric perturbation generated
by a diffeomorphism along §* is yap = Legap = 2V (,&p). Let this vector field £* extend smoothly

to the conforngally completed spacetime M (which is needed to preserve the zeroth-order smooth
structure of M) so that €% = £ and &, = Gt = Q2%¢,. The corresponding perturbation to the
conformally completed metric is given by

Yab = QQf)’ab . (11)
a) Show that Eq. (1.1) in terms of £% is
Yab = 2@(agb) - 29_1@09 §c§ab = 2@(a§b) —207! ncgcgab . (1'2)

Also show that this equation implies that £2 = 0, where £ is the Q-component of £°.
b) Next, expand the components of £€* in terms of Q, e.g. &% = EELO) (u, z4) + sz‘l)(u, zA) +
O(Q?), and substitute this into Eq. (1.1). It is common practice to call 5}‘0) (u,z) = F and

é((‘)) (u,z4) = Y4, Show that

Yuu =0 (1.3a)
Fur = =€) + OuF (1.3b)
Fua = SapouY? (1.3¢)
oo = 280 (1.3d)
Joa = DaF + Sapf) (1.3e)
Jap = 2D(4Yp) — 25488} (1.3f)

(1.3g)
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and }
o =20uF — 65} +2DaY " . (1.4)

Hint: To simplify your intermediate calculations, use early on that = 0 on Z.

c¢) Since the leading order structure at Z is fixed, we require 74, = 0. Using this, show that
1
2D(4Yp) — SapDcY® =0 and F=f+ 5uDAYA (1.5)
with 9, f = 0 = 9,Y*4 and Dy4 the derivative operator compatible with the unit two-sphere

metric.

d) Bringing together the results from part c), we can conclude that a general BMS vector has the
form €% = Fn® 4+ Y®. We can split this vector field into a vector field x* = fn®, responsible
for the supertranslations, and a vector field (¢ = §D AY A n%4Y responsible for the Lorentz
transformations. Show that

agy =0 and Qy) = %DAYA , (1.6)

as expected.

e) Verify explicitly that these vector fields form a closed algebra since for an arbitrary BMS
vector field £ = Fn* 4+ Y%, we find that:

[g, Y]a = — (Eyf + uﬁya(y)) n® €b (1.7a)
€.9(6.0)n]" = (Lyg— apyg)n® €5 (L.7b)

where the second line shows in fact that the supertranslations form a Lie ideal.

f) How does a BMS vector field in physical (u,r,8,¢) coordinates look? (The answer to this
subquestion should be a very short calculation.)

Additional practice ]

Exercise 4.2: Supertranslations

Understand how the radiation field and the Bondi mass aspect transform under
a supertranslation.

a) Verify Eq. (5.4) in the Lecture notes using Eq. (5.3). Note that §yCsp refers to O(r) part
in Legap.

b) Similarly, show that a supertranslation changes the Bondi mass aspect in the following man-
ner

1 1
6 M = fO,M + ZNABDADB f+5Da fDpNAB (2.1)

You will need to use that the r-component of £% is given by

1 1 1
¢ =5D"Daf - o <DAfDBcAB + 2cf“F’DADBf) +0(r7?). (2:2)

c) Take the u-derivative of Eq. (2.1) and show that this result is consistent with taking d; of
the evolution equation in Eq. (4.20) in the Lecture notes.
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Exercise 4.3: Memory effect

a)

The electromagnetic analog of gravitational wave memory is the change in a de-
tector in the asymptotic region after an electromagnetic wave has passed. Instead
of a distortion in the detector, as occurs in the gravitational wave case, you will
show that there is a velocity kick to the charges in the detector.

First, show that if the source current in Minkowski spacetime has the following decay towards

null infinity
) L u,mA 1
p=Jr= % +0 <r3> (3.1a)

then the electromagnetic field decays as

B, = w e (7}3) (3.2a)
p, = 20w (73) (3.2b)
By = Eg (u, 2 + 0 C) (3.2¢)
By =B (u,x (i) (3.2d)

Hint: A possible approach is to think about the required fall-off in Cartesian coordinates
and use (some of) Maxwell’s equations (specifically, V,E* = 47p and V,B* = 0).

Using the Lorentz force

F, =q (Ea " eabcvbBc> , (3.3)

show that the velocity kick experienced by a charged test particle (=detector) with negli-
gible initial velocity following a trajectory of the time translation vector field 9/0t so that
(r,0,¢) = (1o, 0o, do), is to leading order given by

AT = ——
mro

(3.4)

/ du B (u, 65, ¢o)

Consider an electromagnetic wave generated by a time-varying dipole moment p,, so that
near Z the electric field is given by

R N AN 1
E, = ;&J (pa 7’ pp ra) +0 (7"2) , (3.5)

where 7% is the unit vector in the radial direction. Calculate the induced velocity kick. Repeat
the same calculation, but consider now the slow motion limit, so that the dipole moment is

Pa=_ ) (3.6)
k

(k)

where k runs over all objects with charge ¢®) and velocity vg .
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