
Foundations of gravitational waves and black hole perturbation theory 2020/2021
(NWI-NM125)

Problem sheet #1: Conformal transformations

Tutorial on Thursday 3 February 2022, 13:30 - 15:15

This tutorial will not be graded but contains essential material of this course. You are not expected
to finish all the exercises during the tutorial and likely will need some additional hours to com-
plete all exercises. Feel free to (virtually) meet with your fellow students to work on these exercises.

Exercise 1.1 and 1.2 are essential, while exercise 1.3 and 1.4 are recommended for further practice.
Be aware that exercise 1.1. takes by far the most amount of time.

A conformal transformation is a mathematical tool with numerous applications in general relativity
and we will rely on it heavily in this course. It describes a local change of scale, that is, a
conformal transformation re-scales distances without changing angles. In particular, let (M, gab) be
a spacetime. A conformal transformation on gab consists of replacing gab by the metric g̃ab = Ω2gab
where Ω is a positive scalar field on M and is called the conformal factor. The inverse metric of
the conformally rescaled metric is g̃ab = Ω−2gab so that gabgbc = δac = g̃abg̃bc.

Exercise 1.1: Derivative operators and curvature tensors

How to relate the covariant derivative operator ∇a and ∇̃a to each other? And
how to relate curvature tensors associated to gab and g̃ab?

Let ∇a and ∇̃a be covariant derivative operators with respect to gab and ∇̃ab, respectively (so
∇agbc = 0 and ∇̃ag̃bc = 0). Since both are derivative operators, there exists a tensor field Cc

ab =
Cc
(ab) on M such that

∇̃mT
a...b

c...d = ∇mT
a...b

c...d +Ca
mnT

n...b
c...d + . . .+Cb

mnT
a...n

c...d −Cn
mcT

a...b
n...d − . . .−Cn

mdT
a...b

c...n (1.1)

for any tensor field T a...b
c...d on M . In other words, the tensor field Cc

ab relates the two (covariant)
derivative operators.

a) Using ∇̃ag̃bc = 0, show that Cc
ab is given by

Cc
ab = Ω−1gcd (gad∇bΩ + gbd∇aΩ− gab∇dΩ) . (1.2)

Hint: Use Eq. (1.1) to write ∇̃ag̃bc = 0 in terms of ∇a and Cc
ab, use that ∇agbc = 0 and

substitute this in ∇̃ag̃bc − ∇̃bg̃ca − ∇̃cg̃ab = 0.

b) Using the following definition of the Riemann tensor R̃ d
abc vd = 2∇̃[a∇̃b]vc for any va, show

that

R̃ d
abc = R d

abc − 2∇[aC
d
b]c + 2Cm

c[aC
d
b]m (1.3)

and

R̃ d
abc = R d

abc + 2g d
[a ∇b]∇c ln Ω− 2gdegc[a∇b]∇e ln Ω− 2g d

[a ∇b] ln Ω∇c ln Ω

+ 2gc[a∇b] ln Ω gde∇e ln Ω− 2gc[ag
d

b] g
ef∇e ln Ω∇f ln Ω . (1.4)
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c) Finally, by contracting the above equation with the metric to obtain the Ricci tensor and
scalar, show that

R̃ab = Rab − (n− 2)∇a∇b ln Ω− gabgcd∇c∇d ln Ω + (n− 2)∇a ln Ω∇b ln Ω

− (n− 2)gabg
cd∇c ln Ω∇d ln Ω (1.5)

R̃ = Ω−2
[
R− 2(n− 1)gab∇a∇b ln Ω− (n− 2)(n− 1)gab∇a ln Ω∇b ln Ω

]
, (1.6)

where n is the spacetime dimension so that gabgab = n.

d) Extra: Show that the Weyl tensor is unchanged by a conformal transformation, i.e. C̃ d
abc =

C d
abc (note the index position: this is essential!). Recall that the Weyl tensor is defined as

C d
abc = R d

abc −
2

n− 2

(
gc[aR

d
b] − g

d
[aRb]c

)
+

2

(n− 1)(n− 2)
Rgc[ag

d
b] . (1.7)

Exercise 1.2: Schwarzschild spacetime

You will show explicitly that Schwarzschild spacetime is asymptotically flat.

a) The Schwarzschild metric in (t, r, θ, φ) coordinates is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (2.1)

where f(r) = 1 − 2M/r. Perform a coordinate transformation to coordinates convenient to
take the limit to I and conformally complete the spacetime.

b) Show that the Schwarzschild spacetime satisfies all the conditions in the definition of an
asymptotically flat spacetime (see Def. 2.1 in the Lecture notes).

Additional practice

Exercise 1.3: Geodesics and conformal transformations

You will learn that conformal transformations do not change the causal structure
of a spacetime by studying null geodesics.

a) Show that if va is a null vector with respect to gab, it is also a null vector with respect to the
conformally rescaled metric g̃ab.

b) In part (a), you showed that conformal transformations leave null vectors invariant; now you
need to show that a vector that is null and geodesic with respect to gab remains null and
geodesic. Specifically, show that conformal transformations leave null geodesics invariant.
Recall that the geodesic equation is

vb∇bv
a = α va , (3.1)

where α is an arbitrary function. If the geodesics is affinely parametrized, α = 0 (you can
always reparametrize your curve so that this is true). To highlight the difference, some
physicists will call the above equation with α 6= 0 ‘geodetic’ and only when α = 0 ‘geodesic’.

Note that the invariance of geodesics with respect to conformal transformations is not true
for time- or space-like geodesics: these are changed by conformal transformations!
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Exercise 1.4: Curvature in two-dimensions

Any two-dimensional metric can locally be written as a flat metric multiplied by
a conformal factor.

Show that for two-dimensional spacetimes, a conformal transformation can be found such that (at
least locally) the curvature of the transformed metric vanishes provided that gab∇a∇b is invertible.
Note that generically, this can only be done locally and not over the entire manifold.
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