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Abstract

The first ever picture of a black hole created by the Event Horizon Telescope in
April 2019 has induced new interest in research in null geodesics around black holes.
While a popular topic, null geodesics around multiple black holes have not been
studied extensively. In this thesis, we will look at the Majumdar-Papapetrou solu-
tion. This analytic solution describes multiple charged black holes in equilibrium
and is motivated by the Schwarzschild and Reissner-Nordström solution. We will
focus on closed photon orbits in particular, since most of their properties are still
unknown. Moreover, for Schwarzschild and Reissner-Nordström spacetimes the
properties of these special orbits are closely related to their quasinormal modes.
We will provide plots of these closed photon orbits for two and three black hole
spacetimes and discuss their properties such as the orbital period and stability in
detail.
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1 Introduction

1.1 Theory of general relativity

The most accepted theory of gravity is the theory of general relativity. It was dis-
covered by Albert Einstein in 1915, a decade after he published his theory of special
relativity. Special relativity states that the laws of physics do not depend on your
frame of reference and that the speed of light in vacuum has a unique value for all
observers. This theory, however, did not include the effect of gravity. In the next
ten years, Einstein realised that massive objects curve time and space. The theory
of general relativity was born. While Newton thought of gravity as an attractive
force between masses, general relativity describes gravity as the changing geometry
of space and time.

General relativity uses the concept of geodesics to describe the trajectories of free
particles in spacetime. Intuitively, a geodesic is a generalisation of a straight line to
a curved spacetime. It is the fastest route between two points. In this thesis we will
focus on null geodesics, which are the paths travelled by photons. In a spacetime,
distances can be measured by introducing the concept of a metric. A metric is a
tensor which captures the geometry of the spacetime. It is the main building block
of each spacetime and it can be used to derive the motion along geodesics. The un-
derlying geometry of a spacetime does not change when one performs a coordinate
transformation on a metric. Therefore, choosing a good coordinate system results
in a simpler solution of the Einstein equations, which describe general relativity.

1.2 Black holes

General relativity predicts the existence of black holes. A black hole is a highly
compact object, giving rise to a region in spacetime where the gravitational field is
extremely strong. When matter or light gets too close to a black hole, it will end
up inside it. The boundary of this region is known as the event horizon of the black
hole and acts as a surface of no return.

At first these black holes were purely mathematical objects. The first solution of
the Einstein equations that featured a black hole was the Schwarzschild solution.
It was found in 1916 independently by Karl Schwarzschild and Johannes Droste.
It describes a static spacetime, which means that the gravitational field does not
change with time. The Schwarzschild black hole, which arises from this solution, is
spherically symmetric and thus does not have any angular momentum.

An extension of the Schwarzschild solution is the Reissner-Nordström solution,
found independently by Hans Reissner in 1916 and Gunnar Nordström in 1918.
The Reissner-Nordström black hole is allowed to have an electric charge. There-
fore, the gravitational field around this black hole is dependent on its mass and
charge.
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Both the Schwarzschild and Reissner-Nordström solution are static solutions and
therefore only describe the gravitational field around a non-rotating black hole.
In 1963, Roy Kerr discovered the Kerr solution, describing the gravitational field
around an uncharged rotating black hole. Since the Kerr black hole is allowed to
rotate, it does have angular momentum and is not spherically symmetric. In 1965,
the Kerr-Newman solution was discovered. It is an extension of the Kerr solution
where the black hole is allowed to have an electric charge. We will see that these
two solutions are not useful for our research. Hence, they will not be discussed in
further detail in this thesis.

Over the years, the existence of black holes was ratified by direct and indirect ev-
idence. An example of indirect evidence is the accretion of matter. When matter
gets close to the event horizon of a black hole, its temperature increases due to
the friction which arises from the very high speed the matter has reached. Con-
sequently, the matter converts gravitational energy into electromagnetic radiation
such as light. This radiation can be observed by telescopes.

An example of more direct evidence for black holes is the detection of gravitational
waves by LIGO and Virgo in 2015. Gravitational waves are small disruptions in
spacetime and were predicted by general relativity. Einstein stated that these dis-
ruptions were caused by massive accelerating objects such as black holes orbiting
each other. The detection of gravitational waves was another conformation that
Einstein was right.

In April 2019, the team of the Event Horizon Telescope Collaboration presented
the first ever picture of a black hole [2]. This was a huge breakthrough, since it is
the most direct evidence for the existence of black holes and it again proves that
the theory of general relativity is the best gravitational theory to date.

1.3 Multiple black hole research

The black hole picture has spurred new interest in the study of null geodesics around
black holes. In contrast to single black hole spacetimes, null geodesics in spacetimes
with multiple black holes have not been studied extensively. In this thesis we will
look at an analytic solution which allows multiple black hole spacetimes, known
as the Majumdar-Papapetrou (MP) solution. It describes a static spacetime with
multiple maximally charged black holes in equilibrium. We will motivate this solu-
tion by the Schwarzschild and Reissner-Nordström solution.

We will look at two and three black hole MP spacetimes. In particular we will study
closed photon orbits, since most of their properties are unknown. Some properties
we will discuss in our research are the radius, orbital period and stability of orbits.
In the two black hole spacetime, we will choose a cylindrical coordinate system
which allows us to look at two different symmetry planes. In the three black hole
spacetime, we will look at two different configurations of the black holes. We will
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also compare two and three black hole spacetimes, which allows us to study how a
third black hole affects the orbits around a binary.

Predicting the photon paths in multiple black hole spacetimes and studying their
properties would give us more insight in light rays near black holes. However,
it would be hard to compare this research with real-life observations such as the
black hole picture made by the Event Horizon Telescope Collaboration. The MP
spacetimes discussed in this thesis are static and thus do not allow rotating black
holes. Also, by working with MP spacetimes we only consider electrically charged
black holes, which have not been observed in real life (yet). Therefore the research
performed in this thesis serves as a toy model for the motion of photons around
multiple black holes.

5



2 From one to multiple black holes

2.1 Ricci & Kretschmann scalar

In this section we will discuss two curvature related scalars. These scalars are
gauge-invariant and can help us gain a better understanding of the spacetime. We
will start by looking at the Ricci scalar. We can determine this scalar using a direct
computation, but for the spacetimes discussed in this thesis we can use a simpler
argument. To this end, we solve the Einstein field equations with zero cosmological
constant:

Rµν −
1

2
gµνR = 8πTµν . (2.1.1)

In this equation Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric and
Tµν is the stress-energy tensor. The Ricci scalar is defined as R = gµνRµν , where
gµν is the inverse metric. In order to find a direct relation between the Ricci scalar
and the stress energy tensor, we can multiply Eq. (2.1.1) with the inverse metric
gµν . We find:

gµνRµν −
1

2
gµνgµνR = 8πgµνTµν . (2.1.2)

Simplifying gives

R− 1

2
δµµR = 8πTµµ . (2.1.3)

Here, Tµµ is the trace of the stress-energy tensor. Using δµµ = 4 results in

R = −8πTµµ . (2.1.4)

We now have derived a direct relation between the Ricci scalar and trace of the
stress-energy tensor. We will see that this relation will come in handy to determine
the Ricci scalar for all spacetimes discussed in this thesis.

The second curvature related scalar we will discuss is the Kretschmann scalar K.
We will see that the Ricci scalar vanishes for the cases we look at. The Kretschmann
scalar, on the other hand, will not. It can be determined using the Riemann tensor:

K = RαβγδR
αβγδ. (2.1.5)

Since K is quadratic in the Riemann tensor, it is called a quadratic invariant. Since
the Kretschmann scalar is only dependent on the Riemann tensor, it can be used to
determine if a singularity in your spacetime is a coordinate singularity or a phys-
ical singularity. If the Riemann tensor is well-defined at a coordinate singularity,
the Kretschmann scalar is well-defined there as well. This is not true for physical
singularities, for which the Kretschmann scalar can diverge [9].

The Riemann tensor can be determined using the following equation:

Rαβγδ =
∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓµβδΓ
α
µγ − ΓµβγΓαµδ, (2.1.6)
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where Γαγβ are the Christoffel symbols and xα the coordinates of the spacetime.
The Christoffel symbols can be determined using the Levi-Civita connection, to be:

Γαβγ =
1

2
gαδ

(
∂gδγ
∂xβ

+
∂gβδ
∂xγ

−
∂gβγ
∂xδ

)
. (2.1.7)

So after all, the Kretschmann scalar is only dependent on the metric coefficients. For
the spacetimes discussed in this thesis I will make use of the Black Hole Perturbation
Toolkit for Wolfram Mathematica 12.1 to determine the Kretschmann scalar [1].

2.2 Schwarzschild solution

We will now discuss different solutions of the Einstein field equations. We start by
looking at a simple single black hole solution, which is known as the Schwarzschild
solution. This solution is named after Karl Schwarzschild. He produced this solu-
tion in 1916, a year after Einstein stated his theory of general relativity. At the
same time, Johannes Droste found this solution as well.

After studying this simple case for a single black hole, we can then advance to a more
complicated solution for multiple black hole spacetimes. Since the Schwarzschild
solution has been extensively studied before, we will only go through some proper-
ties which are of interest regarding our multiple black hole research.

The Schwarzschild metric in spherical coordinates is given by

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (2.2.1)

From this point we will use geometric units, which means that we will set the speed
of light c and the gravitational constant G to a value of 1. The black hole that
arises from this metric is known as the Schwarzschild black hole. The only free
parameter in this spacetime is the mass M . This means one can only distinguish
two Schwarzschild black holes by their mass.

The Schwarzschild solution is relatively simple because it is based on some assump-
tions. First, the spacetime is static. This means that the gravitational field does
not change with time. We can conclude this by looking at the metric coefficients,
since none of the coefficients is dependent on the time coordinate t. By intro-
ducing Killing vectors in section 2.5, we will see that a static spacetime leads to
conservation of the energy E of particles along their geodesic. Since we only look
at null geodesics, this is the energy of the photons along their geodesic. Second,
the spacetime is spherically symmetric. Using the theory of Killing vectors, this
implies that the angular momentum L is conserved along the geodesics. Finally,
the Schwarzschild black hole is not electrically charged.

The Schwarzschild metric (2.2.1) gives rise to two singularities. We have a physical
singularity at r = 0 and a coordinate singularity at r = 2M . This coordinate singu-
larity can be removed by switching to another coordinate system. In our spherical
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coordinate system, the radius r = 2M is known as the event horizon, the surface
of no return.

The Schwarzschild solution is a vacuum solution, which means that the stress-energy
tensor Tµν vanishes. In particular, the stress-energy tensor is traceless. Therefore,
by making use of Eq. (2.1.4), the Ricci scalar vanishes as well. But if R = 0 and
Tµν = 0, then Eq. (2.1.1) reduces to Rµν = 0. However, this does not imply that
the Riemann tensor Rαβγδ vanishes. Using Eq. (2.1.5) we find:

K =
48M2

r6
. (2.2.2)

From this we can conclude that r = 0 is indeed a physical singularity and r = 2M
is a removable singularity [9].

In order to determine the photon paths around a Schwarzschild black hole, we
first have to determine the equations of motion of a photon propagating in the
Schwarzschild spacetime. For a detailed description of null geodesics in this space-
time, see reference [11].

Figure 1 shows the null geodesics around a Schwarzschild black hole, displayed
as blue lines. The photons are coming from below, horizontally separated by a
distance 1M . The black circle corresponds to the area inside the event horizon.
When photons come too close to the black hole, they will end up inside it. The
radius of the grey circle is known as the photon ring. The photon ring is the only
circular orbit for photons around this black hole. It has a radius of r = 3M and is
known to be unstable. This means that a small perturbation results in the photon
exiting the orbit. It will then either escape to infinity or fall into the black hole.

8



Figure 1: A two-dimensional plot of null geodesics around a Schwarzschild black
hole. The null geodesics (in blue) are initially separated by a distance 1M in the
x-direction. The black circle corresponds to the area inside the event horizon. The
grey circle corresponds to the area inside the photon ring. On the axes we have
Cartesian coordinates given by x = r cosφ and y = r sinφ. The photons were shot
from below with initial velocities (vxi ,vyi) = (0.0,1.0) at a vertical initial position
yi = −100M .
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2.3 Reissner-Nordström solution

An extension of the Schwarzschild solution is the Reissner-Nordström solution. In
this solution the black hole is allowed to have an electric charge Q. This results in
an extra term in the metric, which is now given by

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 +r2dθ2 +r2 sin2 θdφ2. (2.3.1)

The black hole which arises from this metric is known as the Reissner-Nordström
black hole. Since the term concerning the electric charge is proportional to 1/r2,
the Reissner-Nordström black hole is well approximated by the Schwarzschild black
hole at large distances (r � 0).

The Reissner-Nordström solution is not a vacuum solution, but still has a vanishing
Ricci scalar. The Kretschmann scalar is given by

K =
8(7Q4 − 12MQ2r + 6M2r2)

r8
. (2.3.2)

We can conclude that there is a physical singularity at r = 0. If we want to
determine the horizons of the Reissner-Nordström black hole, we have to search for
which values of r the metric components diverge. This means that we have to solve
the following equation:

1− 2M

r
+
Q2

r2
= 0. (2.3.3)

This equation is quadratic in r. Therefore there are two solutions for the radius:

r = M ±
√
M2 −Q2. (2.3.4)

Since we now have two free parameters, the mass M and the charge Q, there are
in general three configurations. For our research we ignore the cases Q < M and
Q > M . We are only interested in the case Q = M , the so called extremal case. If
we substitute this relation in Eq. (2.3.4) we see that we only obtain one horizon
with r = M . By substituting Q = M in the metric (2.3.1) we obtain the metric for
the extremal Reissner-Nordström black hole:

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2dθ2 + r2 sin2 θdφ2. (2.3.5)

In this metric, we have written the first two metric components as squares. The ex-
tremal Reissner-Nordström black hole with the metric as defined in (2.3.5) happens
to be a good foundation for a spacetime with multiple charged black holes.
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2.4 Majumdar-Papapetrou solution

Another exact solution of the Einstein field equations is the Majumdar-Papapetrou
(MP) solution. This solution allows us to look at a spacetime with multiple black
holes. To understand the MP metric better, we switch to a different coordinate sys-
tem of the extremal Reissner-Nordström metric (2.3.5). We perform the coordinate
transformation ρ = r −M . Our metric now has the following form:

ds2 = −dt
2

U2
+ U2(dρ2 + ρ2dθ2 + ρ2sin2θdφ2), (2.4.1)

where we have defined U as

U = 1 +
M

ρ
. (2.4.2)

A drawback of this coordinate transformation is that we can not speak of horizons
anymore; the only horizon r = M reduces to ρ = 0. Therefore we have to treat
the black hole as a pointlike object now [12]. However, we also get lucky by doing
the coordinate transformation. It happens to be that U is a solution of the Laplace
equation:

∇2U = 0. (2.4.3)

As a result, we can take take a whole collection of extremal Reissner-Nordström
black holes. If we take a spacetime with N black holes, we can define U as follows:

U = 1 +
N∑
j=1

Mj

|r− rj |
. (2.4.4)

In this definition, we sum over the mass Mj and the coordinates rj of each black
hole. The only change in the metric (2.4.1) is the functional form of U . If we look
at a single black hole, we take N = 1 and we see that the definition of U in (2.4.4)
reduces to U as defined in (2.4.2) with position rj = 0 [6].

Just as the Reissner-Nordström solution, the MP solution is an electrovacuum so-
lution. This means that the MP metric satisfies the Einstein-Maxwell equations.
Therefore the stress-energy tensor will be traceless. Using Eq. (2.1.4), the Ricci
scalar R will vanish for all MP spacetimes.
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2.5 Equations of motion

Our goal is to determine the equations of motion of photons propagating in the
MP spacetimes. After we have derived these, it is possible to study the photon
paths in various multiple black hole planes. In this section, we will derive the
equations of motion for a spacetime in cylindrical coordinates, since we use this set
of coordinates for most of our results. The cylindrical MP metric is defined as

ds2 = −dt
2

U2
+ U2(dρ2 + ρ2dφ2 + dz2), (2.5.1)

with U a function of ρ, φ and z, satisfying Eq. (2.4.3). MP spacetimes are static,
since the metric coefficients are time independent. In terms of general relativity,
this gives rise to a so called Killing vector Kµ. If the metric is moved a little bit
by Kµ and the metric doesn’t change, then Kµ is a Killing vector. By using these
Killing vectors we can determine the conserved quantities along the geodesic. If
Kµ is a Killing vector we therefore can use

Kµẋ
µ = constant. (2.5.2)

The dot-notation refers to the derivative of the coordinate xµ with respect to some
affine parameter λ along the geodesic:

ẋµ =
dxµ

dλ
. (2.5.3)

Because of our static spacetime we thus have a timelike Killing vector for the MP
metric as defined in (2.5.1):

Kµ = (1, 0, 0, 0). (2.5.4)

We can substitute this Killing vector in Eq. (2.5.2) and we obtain out first conserved
quantity:

ṫ

U2
= constant = E. (2.5.5)

Here, E is the energy of the particles (or photons) along the geodesic, as already
mentioned in section 2.2. A static spacetime thus results in conservation of the
energy E along geodesics. Because the cylindrical MP metric (2.5.1) also is axially
symmetric, we have a second Killing vector as well:

Kµ = (0, 0, 1, 0). (2.5.6)

By substituting this Killing vector in Eq. (2.5.2) we obtain our second conserved
quantity:

ρ2U2φ̇ = constant = L. (2.5.7)

Here, L is the angular momentum. This means that in any axially symmetric sys-
tem, the angular momentum L is conserved. Hence, we now have the equations of
motion for the time coordinate t, Eq. (2.5.5), and for the angular coordinate φ, Eq.
(2.5.7).

12



There are two approaches to determine the other equations of motion. The first
approach is to use the geodesic equation:

ẍα + Γαβγ ẋ
βẋγ = 0, (2.5.8)

where Γαγβ are the Christoffel symbols. This approach is rather time-consuming,
since you have to determine all the possible Christoffel symbols using Eq. (2.1.7).
More importantly, you will obtain second order differential equations using this
approach.

Ideally we would like to get first order differential equations only, since they are
easier to solve numerically. Therefore we will use another approach, which we will
call the hybrid Lagrangian-Hamiltonian approach. We will use the Lagrangian for
free particles, which is defined as

L =
1

2
gαβẋ

αẋβ = −1

2
ε. (2.5.9)

The constant ε is the norm of the vector tangent to the geodesic and is conserved.
It can be seen as a normalisation condition. For null geodesics, ε = 0.

By substituting the metric coefficients of the cylindrical MP metric (2.5.1) into Eq.
(2.5.9) we can write the Lagrangian as

L =
1

2

(
− ṫ2

U2
+ U2(ρ̇2 + ρ2φ̇2 + ż2)

)
. (2.5.10)

We now can substitute the conserved quantities E and L as well, using Eq. (2.5.5)
and Eq. (2.5.7). Therefore the Lagrangian becomes

L =
1

2
U2

(
−E2 + ρ̇2 +

L2

ρ2U4
+ ż2

)
. (2.5.11)

If we now use ε = 0, we obtain the energy relation

E2 = ρ̇2 + ż2 + Veff(ρ, z), (2.5.12)

where we have defined the effective potential

Veff(ρ, z) =
L2

ρ2U4
. (2.5.13)

We will now use the Euler-Lagrange equations to determine the other equations of
motion:

d

dλ

(
∂L
∂ẋµ

)
=

∂L
∂xµ

. (2.5.14)

In order to obtain first-order differential equations only, we use the definition of the
momentum pµ of the coordinates:

pµ =
∂L
∂ẋµ

. (2.5.15)
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For the momentum in the ρ-direction we then obtain

pρ =
∂L
∂ρ̇

= U2ρ̇. (2.5.16)

For the momentum in the z-direction we get

pz =
∂L
∂ż

= U2ż. (2.5.17)

The derivative of the momentum can easily be determined by using the Euler-
Lagrange equations:

ṗµ =
d

dλ

(
pµ
)

=
d

dλ

(
∂L
∂ẋµ

)
=

∂L
∂xµ

. (2.5.18)

For the derivative of the momentum in the ρ-direction this results in

ṗρ =
∂L
∂ρ

=
1

U3

∂U

∂ρ
ṫ2 + U

∂U

∂ρ
ρ̇2 +

(
ρ2U

∂U

∂ρ
+ ρU2

)
φ̇2 + U

∂U

∂ρ
ż2. (2.5.19)

In a similar way, we obtain the derivative of the momentum in the z-direction:

ṗz =
∂L
∂z

=
1

U3

∂U

∂z
ṫ2 + U

∂U

∂z
ρ̇2 + ρ2U

∂U

∂z
φ̇2 + U

∂U

∂z
ż2. (2.5.20)

In order to derive these equations we have used that U = U(ρ, z). Since the metric
components are functions of U2, we also used the chain rule in these derivations:
∂
∂ρU

2 = 2U ∂U
∂ρ and ∂

∂zU
2 = 2U ∂U

∂z .

We can simplify the expressions of ṗρ and ṗz by substituting the conserved quantities
(Eq. (2.5.5) & Eq. (2.5.7)) and the momenta (Eq. (2.5.16) & Eq. (2.5.17)) into
Eq. (2.5.19) & Eq. (2.5.20). By doing this we complete our system of equations of
motion, which is now given by

ṫ = EU2 (2.5.21a)

φ̇ =
L

ρ2U2
(2.5.21b)

ρ̇ =
pρ
U2

(2.5.21c)

ṗρ =
1

U3

((
E2U4 + p2

ρ +
L2

ρ2
+ p2

z

)
∂U

∂ρ
+
L2U

ρ3

)
(2.5.21d)

ż =
pz
U2

(2.5.21e)

ṗz =
1

U3

(
E2U4 + p2

ρ +
L2

ρ2
+ p2

z

)
∂U

∂z
. (2.5.21f)

This system of first order differential equations can be used to study null geodesics
in any MP spacetime. The structure of these differential equations stays the same
when switching to a spacetime with a different number of black holes, since this
only changes the functional form of U .
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3 Two black holes

The first MP spacetime we are going to look at is a scenario involving two black
holes. We use a cylindrical coordinate system and the metric as defined in Eq.
(2.5.1). Both black holes have equal mass M and are symmetrically placed on the
z-axis at z = ±a. Here, a is the separation constant. Consequently, the distance
between both black holes is 2a in this binary system. Using Eq. (2.4.4) we can
define U in the following way:

U = 1 +
M√

ρ2 + (z − a)2
+

M√
ρ2 + (z + a)2

. (3.0.1)

The easiest planes to study null geodesics are the symmetry planes. For this binary
system we look at two of them. We start by looking at the meridian (φ = 0)
plane and then proceed to the plane where we have set z = 0. Also, we will
restrict ourselves to the study of closed photon orbits. These particular types of
null geodesics are very interesting since their properties are closely related to the
(in)stability of MP spacetimes and the onset of chaos.

3.1 Meridian plane

Fixing the azimuth angle φ gives rise to a symmetry plane. Since we have conser-
vation of angular momentum L, the value of φ can be chosen arbitrarily. Therefore
we choose φ = 0, and we will call this symmetry plane the meridian plane. As a
result we do not have angular momentum. This follows from the second equation
of motion, Eq. (2.5.21b).

Figure 2 shows a contour plot of the Kretschmann scalar for the black hole binary
in the meridian plane. The spacetime is characterized by a separation constant
of a = 10M . From the plot we can conclude that the spacetime is more strongly
curved closer to each black hole.

Figure 2: A contour plot of the Kretschmann scalar in the two black hole meridian
plane. The distance between both holes is 20M .
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Figure 3 shows the closed photon orbits around a binary system with separation con-
stant a = 10M . This plot was made by integrating the equations of motion (2.5.21)
using the RK4 numerical integrator from Wolfram Mathematica 12.1. There are
only three different types of closed photon orbits, which can be easily distinguished
in the plot. There are two orbits which only cover one black hole each. They are
shown in red and are roughly circular. There is also an orbit which covers both
horizons, shown in blue. At last there is the black orbit, which we will call the
8-shaped orbit. These orbits will now be discussed in more detail.

Figure 3: The only three different types of closed photon orbits around a binary
system in the meridian plane, characterized by a separation constant a = 10M .
There are two orbits which only enclose one black hole each, shown in red. These
orbits are almost perfectly circular. There is an orbit which covers both black holes,
shown in blue, and there is an 8-shaped orbit, shown in black.

3.1.1 Circular orbits

At first we take a closer look at the red orbits. These orbits have initial coordinates
(ρ0,z0) = (0,±10.9543895M) and initial momenta (pρ0 ,pz0) = (EU2

0 , 0). We keep
the energy constant at E = 1 and U0 can be determined by substituting the initial
coordinates ρ0 and z0 into Eq. (3.0.1). The orbital period T of the orbits can be
determined by integrating Eq. (2.5.21a) with respect to the affine parameter λ:

T =

∫ λmax

0
ṫdλ = E

∫ λmax

0
U2dλ. (3.1.1)

In this equation, λmax is the value of λ when the photon has completed exactly
one orbit. Numerical integration leads to T = 26.390M for the red orbits with
λmax = 5.9834.

In Figure 3, we can see that the radii of the red orbits are approximately equal to
1M . We can define r =

√
ρ2 + (z ± a)2 as the radius of these circular orbits. For

ρ = 0 we find r = 0.9544M . Unfortunately the red orbits are not perfectly circular.
If the photon is orbiting one black hole, the distance to the other black hole will
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change as the affine parameter λ increases. This means that the gravitational field
of the second black hole felt by the photon will change as well. In other words, the
gravitational pull from the second black hole on the photon is not constant. This
results in the red orbits not being perfectly circular.

We can do a further analysis regarding the radius. By using Taylor expansions for
large separations a � M we can approximate the radius. A detailed description
can be found in Appendix A.1. This leads to the following relation between the
radius r and the separation constant a:

r

M
' 1− M

2a
. (3.1.2)

Substituting a = 10M results in an approximated radius of r ' 0.95M , which
slightly underestimates the numerical value r = 0.9544M . In a similar way we can
approximate the orbital period T :

T

M
' 8π

(
1 +

M

2a

)
. (3.1.3)

Here we used the techniques from Appendix A.2. Substituting a = 10M in this
relation results in an orbital period of T ' 26.389M for the red orbits, which is an
excellent approximation to the numerical value T = 26.390M .

Taking the limit a � ∞ in Eq. (3.1.2) results in a radius of r = 1M . In this
case, the orbiting photon only feels the gravitational field of one black hole. The
properties of a binary system with a small separation a � M are similar to the
a = 0 case. In this case the two black holes will unite into one black holes with
twice the mass, as can be concluded from substituting a = 0 into Eq. (3.0.1). There
will only be one orbit left. This orbit is circular and has a radius of r = 2M [4].

3.1.2 The outer orbit

Next we will take a closer look at the outer (blue) orbit. It has initial coordinates
(ρ0,z0) = (0,±11.6554316M) and initial momenta (pρ0 ,pz0) = (EU2

0 , 0). Again,
U0 can be determined by substituting the initial coordinates in Eq. (3.0.1). Note
that this U0 is not equal for each orbit, since the initial coordinates vary. The
orbital period can again be determined by numerically integrating Eq. (3.1.1) with
λmax = 52.8725. As a result we find an orbital period of T = 95.470M .

We observe that the radius of the outer orbit is not constant and thus a circular
approximation of this orbit fails. However, we can try to find a suitable approxi-
mation for this orbit and see if we can extract useful information about the orbital
period.

We first make the comparison with an elliptic orbit. We choose to have equal
intersections with the axes for the ellipse and the blue orbit. Figure 4 shows a
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comparison between the outer orbit (blue) and the ellipse (red). The focal points
of the ellipse can be calculated using the following property of elliptic orbits:

zf = ±
√
z2
c − ρ2

c . (3.1.4)

Here, zc and ρc are the coordinates of the intersection with the z- and ρ-axis respec-
tively and are given by (ρc,zc) = (±3.6198102M ,±11.6554316M). As a result we
find a value of zf = ±11.0791M . We conclude that the foci have a greater distance
to the origin than the black holes. This makes sense because if we kept the foci at
zf = ±a, this would result in a larger value of ρc based on Eq. (3.1.4).

We can now numerically integrate Eq. (3.1.1) to obtain the orbital period of the
ellipse. We will make use of the parametrization z = zc cosα and ρ = ρc sinα where
α ∈ [0, 2π]. As a result we obtain T = 109.109M for the ellipse. We conclude that
this value overestimates the orbital period of the blue orbit. This is consistent
with Figure 4, in which we observe that the ellipse underestimates the blue orbit.
Therefore the distance r to the origin will be smaller for the ellipse. Since U is
proportional to 1/r, it will be larger for the ellipse. Since T is proportional to U2,
the ellipse has a larger value for the orbital period.

Figure 4: A direct comparison between the outer orbit of the two black hole meridian
plane (blue) and its elliptic approximation (red). The intersections of both orbits
with the ρ-axis and z-axis coincide. The parametrization of the ellipse is given by
z = zc cosα and ρ = ρc sinα with α ∈ [0, 2π]. The focal points of the ellipse are
given by zf = ±11.0791M and are shown as red dots. For clarity, the coordinates
of the black holes are shown as black dots. The orbital period of the blue orbit is
given by T = 95.470M , while the ellipse has an orbital period of T = 109.109M .

The ellipse is not a very good approximation of the outer orbit since it overestimates
the orbital period by 14.3%. Therefore we look for a parametrization that fits the
blue orbit better. This leads us to the so called extended circle approximation,
shown in Figure 5.
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This extended circle is characterized by two parametrizations. At first we have
the straight horizontal lines, parametrized by ρ = ±q and z ∈ [−d, d]. Then there
are the two halve circles. The left circle is parametrized by z = q cosα − d and
ρ = q sinα with α ∈ [π2 ,

3π
2 ]. The circle on the right is parametrized by z = q cosα+d

and ρ = q sinα with α ∈ [−π
2 ,

π
2 ]. The parameter q determines the height of the

extended circle and the parameter d determines the width. Both parameters are
chosen such that the extended circle visually fits the blue orbit in the best way.
This leads to the values q = 3.35M and d = 8.00M .

We can again determine the orbital period by numerically integrating Eq. (3.1.1).
Since our approximation yields a symmetric orbit we can integrate over one quarter
of the orbit and then, at the end, multiply the obtained value by 4. Also, since we
did two parametrizations, we split the integral in two parts. In one part we integrate
over the horizontal line, in the other part we integrate over the circle. Performing
these steps results in an orbital period of T = 91.062M for the extended circle.
Hence, this is a better approximation than the ellipse, since the orbital period is
only underestimated by 4.8%.

Figure 5: A direct comparison between the outer orbit of the two black hole meridian
plane (blue) and its extended circle approximation (red). The straight horizontal
lines are given by ρ = ±q and z ∈ [−d, d]. The circle on the left is given by
z = q cosα− d and ρ = q sinα with α ∈ [π2 ,

3π
2 ]. The right circle is parametrized by

z = q cosα + d and ρ = q sinα with α ∈ [−π
2 ,

π
2 ]. The orbital period of the outer

orbit is given by T = 95.470M , while the extended circle has an orbital period of
T = 91.062M .

3.1.3 The 8-shaped orbit

The last closed photon orbit in the two black hole meridian plane is the black 8-
shaped orbit. The photon follows an 8-like trajectory, circling between both black
holes. The initial coordinates and momenta of this orbit are given by (ρ0,z0) =
(0,±11.4414475M) and (pρ0 ,pz0) = (EU2

0 , 0), respectively. Once again, U0 can
be derived by substituting ρ0 and z0 in Eq. (3.0.1). Numerically integrating Eq.
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(3.1.1) with λmax = 51.5001 results in an orbital period of T = 98.789M for the
8-shaped orbit.

This orbit does not have a simple shape such as a circle or an ellipse. Therefore, we
apply the same techniques of using multiple parametrizations as in the extended
circle approximation of the blue orbit to approximate this orbit. A major differ-
ence, however, is that we use three different parametrizations instead of two. The
8-shaped orbit and its approximation are shown in Figure 6.

The parametrization of the left circular part is given by z = q cosα − d and ρ =
q sinα with α ∈ [π2 ,

3π
2 ]. The right circular part is parametrized by z = q cosα + d

and ρ = q sinα with α ∈ [−π
2 ,

π
2 ]. The parameter q determines the height of the

approximated orbit, while d corresponds to the horizontal distance from the origin
to the start of the circular parts. The semicircles are glued to horizontal lines. The
left lines are parametrized by ρ = ±q and z ∈ [−d,−v], while the right lines are
given by ρ = ±q and z ∈ [v, d]. The parameter v corresponds to the horizontal
distance from the origin to the beginning of the horizontal lines. Finally, these
horizontal lines are connected with two diagonal lines. These diagonal parts of the
approximated orbit are parametrized by ρ = ± q

vz and z ∈ [−v, v]. The parameters
q, d and v are chosen to visually approximate the 8-shaped orbit in the best way.
This leads to the values q = 2.15M , d = 9.20M and v = 7.06M .

The final step will be to determine the orbital period of the approximated orbit.
We will have to split the integral from Eq. (3.1.1) into three parts. Each part
corresponds to a different parametrization. We will again use that the approximated
orbit is symmetric. Therefore, by choosing the right boundaries for each integral,
we can integrate over one fourth of the orbit and multiply our final result by 4.
After performing all these steps we obtain an orbital period for the approximated
orbit of T = 99.402M . We can conclude that this approximation works quite well,
since it only overestimates the orbital period of the 8-shaped orbit by 0.6%.
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Figure 6: A direct comparison between the 8-shaped orbit of the two black hole
meridian plane (black) and its approximation (red). There is made use of three
kinds of parametrizations for the approximated orbit: a circle, straight horizontal
lines and diagonal parts. The orbital period of the 8-shaped orbit is given by
T = 98.789M , while its approximation has an orbital period of T = 99.402M .
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3.2 z = 0 plane

We will now take a closer look at another symmetry plane in our cylindrical co-
ordinate system where we will set the z-coordinate equal to 0. In this symmetry
plane, angular momentum is allowed. The black holes are placed on the z-axis.
This means their coordinates are not located in this symmetry plane. Let us first
rewrite U from Eq. (3.0.1) by substituting z = 0. We will get:

U = 1 +
2M√
ρ2 + a2

. (3.2.1)

We see that U is only dependent on ρ, which now acts as a radial coordinate in this
symmetry plane. In order to highlight the strong gravitational effects, we place the
two black holes closer together at a = M/5. In this plane it is more convenient
to rescale the coordinates with a instead of M . We can now numerically solve the
equations of motion from Eq. (2.5.21), where we use z = ż = 0.

Figure 7 shows three examples of closed photon orbits in the z = 0 symmetry
plane for two black holes. The orbits do not have a simple shape anymore. The
photon precesses with some kind of periodicity. Moreover, a small change in initial
coordinates results in very different orbits.

Figure 7: Three different closed photon orbits in the two black hole z = 0 symmetry
plane. Both black holes have equal mass M = 5a and are placed on the z-axis.
On the axes we have Cartesian coordinates given by x = ρ cosφ and y = ρ sinφ.
From left to right, the orbits have initial coordinates (x0, y0) = (6.00a, 0), (x0, y0) =
(6.94a, 0) and (x0, y0) = (8.81a, 0) and values for the affine parameter λmax = 57.31,
λmax = 277.02 and λmax = 235.99. The initial velocities of all three orbits are given
by (vx0 , vy0) = (0.0, 1.0).

Despite the difficult shapes of the orbits we can do some further analysis regarding
the radial coordinate ρ and investigate if there are any circular orbits in this plane.
Therefore we have to look for critical points of the effective potential from Eq.
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(2.5.13). In this symmetry plane the effective potential in only dependent on the
radial coordinate. To find out if there are circular orbits we have to solve

∂Veff
∂ρ

= 0. (3.2.2)

By solving this equation for ρ we will obtain the radii of the possible circular orbits.
First we substitute U from Eq. (3.2.1) into Eq. (2.5.13). Secondly we differentiate
this relation with respect to the radial coordinate. Then, after setting this equal to
0 and some rearranging, we obtain the following equation:

2M(ρ2 − a2) = (ρ2 + a2)
3
2 . (3.2.3)

Making use of the substitution η2 = ρ2 + a2 results in a cubic equation:

η3 − 2Mη2 + 4Ma2 = 0. (3.2.4)

The discriminant of this cubic equation is given by

D = 128M2a2
(
M2 − 27

8
a2
)
. (3.2.5)

From this relation we can conclude that there are two circular orbits in the two
black hole z = 0 plane, provided that M2 > 27

8 a
2. In order to solve the cubic

equation (3.2.4) we make use of a trigonometric identity [8] and find the following
relations for the inner and outer circular orbit, respectively:

ρin
a

=

√
4M2

9a2

(
1− 2 sin

(
π

6
− 1

3
cos−1 γ

))2

− 1, (3.2.6)

ρout
a

=

√
4M2

9a2

(
1 + 2 cos

(
1

3
cos−1 γ

))2

− 1. (3.2.7)

In these equations, γ = 1 − 27a2

4M2 . Both expressions are only valid provided that
M2 > 27

8 a
2 [10]. For our two black hole plane characterized by M = 5a, we obtain

the relations ρin = 1.167a and ρout = 9.740a.

The left part of Figure 8 shows a plot of the inner (black) and outer (red) circular
orbit. The right part shows a direct comparison between a closed photon orbit
(blue) and both circular orbits. A closed photon orbit is only possible if ρ ≤ ρout,
where ρ is the outer radius of the photon orbit. If this inequality does not hold, the
gravitational field of both black holes is not strong enough for the photon to orbit
and the photon will only get bent and escape to infinity. The closed photon orbits
in Figure 7 also seem to have a small inner radius, acting as the smallest distance
to the origin the photon can reach. When the outer radius ρ increases, this smaller
radius will decrease.
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Figure 8: The only two circular orbits in the two black hole z = 0 plane (left plot),
compared with the middle closed photon orbit from Figure 7 (right plot). The radii
of the inner (black) and outer (red) circular orbits are given by ρin = 1.167a and
ρout = 9.740a, respectively. The outer circular orbit seems to be unstable, while the
inner circular orbit is stable.

We can study the circular orbits in this symmetry plane in further detail by per-
forming a stability analysis. The effective potential reaches a minimum value at
ρ = ρin. Therefore, this orbit is stable. However, the effective potential reaches a
maximum value at ρ = ρout so that this orbit is unstable. A small perturbation
in the radial direction δρ will cause the photon to exit this orbit. This δρ grows
exponentially with time:

δρ ∼ eλt. (3.2.8)

Here, λ is the Lyapunov exponent. It describes the timescale of the exponential
growth. A smaller value of λ will result in a smaller exponential growth of δρ.
Consequently, the orbit will be more stable. We can analytically determine the
Lyapunov exponent of the outer circular orbit and determine how its stability de-
pends on the mass of the black holes. A full derivation of the Lyapunov exponent
of the outer circular orbit is given in Appendix B. The Lyapunov exponent as a
function of the mass is shown in red in Figure 9. After performing a third order
Taylor expansion for M � 1 we found the following relation for λ:

λ

a
' a

8
√

2M
− 5a3

64
√

2M3
. (3.2.9)

This relation, shown in blue in Figure 9, is a good approximation of λ for large M .
Therefore, we can conclude that the outer circular orbit is more stable for more
massive black holes. [4]

23



Figure 9: The Lyapunov exponent λ as a function of the mass M of the outer
circular orbit in the two black hole z = 0 plane, shown in red. The blue curve
corresponds to its third order Taylor expansion (Eq. (3.2.9)).
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4 Three black holes

4.1 Cylindrical case

In this chapter we will discuss two scenarios regarding a three black hole MP space-
time. At first we will look at an extension of the two black hole meridian plane.
We place three black holes on the z-axis with equal mass M and separation a.
Therefore we will call this scenario the cylindrical case. We can define U as

U = 1 +
M√

ρ2 + (z − a)2
+

M√
ρ2 + z2

+
M√

ρ2 + (z + a)2
. (4.1.1)

Since this configuration is also a meridian plane, photons restricted to this plane
necessarily have vanishing angular momentum. A notable difference with the two
black hole meridian plane is the definition of the separation constant a. In the three
black hole case, the distance between the left and middle black hole as well as the
distance between the middle and right black hole is equal to a. In the two black
hole case, however, the distance between both black holes is 2a.

Figure 10 shows a contour plot of the Kretschmann scalar for this cylindrical case,
characterized by a separation of a = 20M . We observe that the spacetime is more
strongly curved closer to the black holes, which is the same conclusion as we found
in the two black hole meridian plane.

Figure 10: A contour plot of the Kretschmann scalar in the three black hole meridian
plane, characterized by a = 20M .

Figure 11 shows all closed photon orbits for the cylindrical case with a = 20M . We
observe that adding only one black hole results in three additional closed photon
orbits. All orbits have initial coordinates ρ0 = 0 and z0 as stated in Table 1. The
initial momenta are given by pρ = EU2

0 and pz = 0. The energy is given by E = 1
and U0 can be determined by substituting the initial coordinates in Eq. (4.1.1).
Table 1 also gives the orbital periods T of each orbit, obtained from numerically
integrating Eq. (3.1.1).
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Figure 11: All different types of closed photon orbits in the three black hole meridian
plane, characterized by a separation constant a = 20M .

Some orbits can be easily compared with the two black hole meridian plane. The
green and purple orbit in Figure 11 correspond to the blue and black orbit in Figure
3, respectively. The circular orbits, shown in red in both figures, are similar as well.

Orbit(s) z0/M λmax T/M
Blue 21.844147170 97.2653 160.597
Orange ±21.752703953 95.3078 168.065
Green ±21.618973331 52.4128 100.551
Purple ±21.413150389 51.1266 103.875
Black 21.362320412 94.0260 174.026
Red (outer) ±20.932594703 5.8441 27.018
Red (middle) 0.908806050 5.7107 27.647

Table 1: The initial coordinates z0, the values of the affine parameter for one orbit
λmax and the orbital periods T of all orbits from Figure 11.

4.1.1 Circular orbits

From Table 1 we observe that the radius of the middle circular orbit is somewhat
smaller than the radii of both outer circular orbits, which are equal. This a differ-
ence with the two black hole meridian plane, where the radii of the circular orbits
were equal. In order to get a better understanding of the circular orbits, we will
again use first order Taylor expansions for large separations. By making use of the
techniques discussed in Appendix A.1, we find for the middle orbit:

r

M
' 1− 2M

a
. (4.1.2)
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Substituting a = 20M in this relation results in r ' 0.9M , which only underesti-
mates the radius of the middle circular orbit from Figure 11 by 1.0%. We can do
the same expansion for the outer circular orbits. As a result we find that both radii
are equivalent and equal to

r

M
' 1− 3M

2a
. (4.1.3)

Hence, the inner circular orbit indeed has a smaller radius than the outer circular
orbits. Substituting a = 20M in Eq. (4.1.3) results in r ' 0.9M for the outer
circular orbits, which only underestimates the numerical value by 0.8%.

The difference in radii can also be explained in a physical way. A photon orbiting
the middle black hole feels, apart from the black hole it is orbiting, the presence
of two black holes at a distance a. A photon orbiting the most left or most right
black hole also feels the presence of two black holes apart from it’s own black hole.
However, it feels one black hole at a distance a and another at a distance 2a. As
a result, the gravitational pull on a photon orbiting one of the outer black holes
will be slightly smaller than the gravitational pull on a photon orbiting the middle
black hole. Therefore, the photon orbiting the middle black hole has to be a little
bit closer to the black hole in order to compensate the extra gravitational pull from
the other two black holes.

The orbital period T of all three circular orbits can be determined by using the
techniques from Appendix A.2. For the middle circular orbit we find

T

M
' 8π

(
1 +

2M

a

)
(4.1.4)

and for the outer circular orbits we get

T

M
' 8π

(
1 +

3M

2a

)
. (4.1.5)

By using a = 20M we find the approximated values T ' 27.646M for the middle
circular orbit and T ' 27.018M for the outer circular orbits. By comparing these
results with the orbital periods from Table 1 we can conclude that the Taylor ex-
pansion for a�M is an excellent approximation for the orbital period.

For a separation constant of a = 20M these approximations work quite well. We
can vary a and see how this affects the approximations of r and T . Figure 12 and
Figure 13 show r and T as a function of a for the middle circular orbit, respectively.
Similar plots can be made for the outer circular orbits. As it should, the error one
makes in only keeping the leading term in a/M reduces for larger a. Interestingly,
at a given a the error is smaller for the orbital period T than for the radius r.
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Figure 12: The radius of the middle circular orbit in the three black hole meridian
plane as a function of the separation constant. The yellow line represents the Taylor
expansion from Eq. (4.1.2), while the black dots are the numerical results. The blue
line corresponds to the asymptotic value of r = 1M .

Figure 13: The orbital period of the middle circular orbit in the three black hole
meridian plane as a function of the separation constant. The yellow line represents
the Taylor expansion from Eq. (4.1.4), while the black dots are the numerical
results. The blue line corresponds to the asymptotic value of T = 8πM .
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We have now studied the radii and orbital periods of circular orbits in MP space-
times with two and three black holes in the meridian plane in detail. Therefore, it
is interesting to compare the results from both planes. In the two black hole case,
the distance between the black holes is 2a. In order to compare the radius of the
circular orbits, we define b = 2a. Now, b measures the distance between the black
holes in the two black hole scenario while a defines the separation in the three black
hole case. As a result we can rewrite Eq. (3.1.2):

r

M
' 1− M

b
. (4.1.6)

We can now compare this relation with Eq. (4.1.2) and Eq. (4.1.3). The circular
orbits in the two black hole meridian plane have the biggest radii. This can again
be explained in a physical way. In the two black hole case, a photon orbiting one
black hole only feels the gravitational pull of one black hole at a distance b. A
photon orbiting one of the black holes from the three black hole plane will always
experience a bigger gravitational pull, since it feels the presence of an extra black
hole.

The final property of the circular orbits in the cylindrical case we will study is their
stability. We will therefore determine the Lyapunov exponent λ for the middle and
outer circular orbit(s) by making use of the techniques mentioned in Appendix B.
Figure 14 shows that the middle circular orbit has a slightly higher value of λ for all
values of M . This means that the outer circular orbits are somewhat more stable
than the middle one. For both cases λ is proportional to 1/M , meaning that more
massive black holes result in more stable circular orbits.

Figure 14: The Lyapunov exponent of the middle (blue) and the outer (yellow)
circular orbit(s) as a function of the mass in the cylinder case, characterized by
a = 20M . Both lines represent a fit through the values of λ, shown as dots.
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4.1.2 The outer orbit

We will now have a closer look at the outer (blue) orbit of the cylindrical case. The
shape of this orbit is better approximated by an ellipse than an extended circle.
Using this approximation, we calculate an approximated value of the orbital period
T . We will look at four of such approximations:

1. Ellipse approximation A: The area of the orbit and the ellipse are equal and
the intersections with the axes are chosen such that the orbit is visually ap-
proximated in the best way. Figure 15 shows the outer orbit (blue) and ellipse
A (orange).

2. Ellipse approximation B: The orbit and the ellipse have equal intersections
with the axes. Figure 16 shows the outer orbit (blue) and ellipse B (red).

3. Ellipse approximation C: The focal points of the ellipse coincide with the
locations of the outer black holes at z = ±20M . The intersections with the
axes are chosen such that the orbit is visually approximated in the best way.
Figure 17 shows the outer orbit (blue) and ellipse C (green).

4. Ellipse approximation D: The area of the orbit and the ellipse are equal. The
focal points of the ellipse and the locations of the outer black holes coincide at
z = ±20M . The intersections with the axes are chosen such that the orbit is
visually approximated in the best way. Figure 18 shows the outer orbit (blue)
and ellipse D (purple).

The focal points and the intersections with the axes are related by Eq. (3.1.4). The
area of an ellipse A and the intersections with the axes are related by

A = πρczc. (4.1.7)

Here, ρc and zc are the intersections with the ρ- and z-axis, respectively. All ellipse
parametrizations are given by ρ = ρc sinα and z = zc cosα. These expressions can
be substituted in Eq. (4.1.1) to obtain an approximated value of U . We substitute
this value of U in Eq. (3.1.1) and after numerically integrating this expression, we
obtain a value of the approximated orbital period.

All properties of the blue orbit and the ellipse approximations are given in Table
2. Ellipse B approximates the orbital period in the best way.

Orbit A/M2 zf/M ρc/M zc/M T/M
Outer (blue) 519.747 − 7.62306 21.84415 160.597
Ellipse A 519.747 ±20.450 7.58500 21.81155 171.016
Ellipse B 523.136 ±20.471 7.62306 21.84415 170.437
Ellipse C 505.426 ±20 7.52841 21.37000 177.733
Ellipse D 519.747 ±20 7.71741 21.43731 175.512

Table 2: A direct comparison between some properties of the outer blue orbit from
Figure 11 and its elliptic approximations. The properties which are given are the
area enclosed by the orbit (A), the focal points of the ellipse (zf ), the intersection
with the ρ-axis (ρc), the intersection with the z-axis (zc) and the orbital period (T ).
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Figure 15: A direct comparison between the outer orbit in the cylinder case (blue)
and ellipse A (orange). The latter is an approximation of the former, where we have
chosen to have equal areas. The black dots represent the coordinates of the black
holes, while the orange dots are the focal points of the ellipse.

Figure 16: A direct comparison between the outer orbit in the cylinder case (blue)
and ellipse B (red). The latter is an approximation of the former, where we have
chosen equal intersections with the axes. The black dots represent the coordinates
of the black holes, while the red dots are the focal points of the ellipse.
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Figure 17: A direct comparison between the outer orbit in the cylinder case (blue)
and ellipse C (green). The latter is an approximation of the former. The focal points
of the ellipse coincide with the coordinates of the black holes, which are shown as
black dots.

Figure 18: A direct comparison between the outer orbit in the cylinder case (blue)
and ellipse D (purple). The latter is an approximation of the former, where we have
chosen to have equal areas. Moreover, the focal points of the ellipse coincide with
the coordinates of the black holes, which are shown as black dots.
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4.2 Triangular case

We will now take a look at another configuration of a three black hole spacetime,
where we have placed the three black holes in a triangle. All black holes have equal
mass M and are separated by a = 20M . We will call this scenario the triangular
case. In this scenario, we do not have axial symmetry anymore. Consequently, the
angular momentum L is no longer conserved. Therefore it is more convenient to
work in Cartesian coordinates. The metric then has the following form:

ds2 = −dt
2

U2
+ U2(dx2 + dy2 + dz2), (4.2.1)

with

U = 1 +
M√(

x+
√

3
6 a
)2

+ y2 +
(
z − 1

2a
)2 (4.2.2)

+
M√(

x−
√

3
3 a
)2

+ y2 + z2

+
M√(

x+
√

3
6 a
)2

+ y2 +
(
z + 1

2a
)2 .

The Lagrangian is now given by

L =
1

2

(
− ṫ2

U2
+ U2(ẋ2 + ẏ2 + ż2)

)
= −1

2
ε. (4.2.3)

In a similar way as discussed in section 2.5, we can now determine the equations
of motion. Since there is no conservation of angular momentum, we have an extra
equation compared to the cylindrical case. Our system of equations of motion is
then given by:

ṫ = EU2 (4.2.4a)

ẋ =
px
U2

(4.2.4b)

ṗx =
1

U3

(
E2U4 + p2

x + p2
y + p2

z

)∂U
∂x

(4.2.4c)

ẏ =
py
U2

(4.2.4d)

ṗy =
1

U3

(
E2U4 + p2

x + p2
y + p2

z

)∂U
∂y

(4.2.4e)

ż =
pz
U2

(4.2.4f)

ṗz =
1

U3

(
E2U4 + p2

x + p2
y + p2

z

)∂U
∂z

. (4.2.4g)
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Despite the absence of axial symmetry, this spacetime does have reflection symme-
try. There are three such symmetry axes. These axes arise when one extends the
lines between the black hole coordinates and the origin. This means that when we
have found a closed photon orbit which is symmetric in one of these three axes,
there are another two orbits which have the same shape and are symmetric in the
other two axes.

Figure 19 shows all closed photon orbits which are symmetric in the x-axis. The
same types of orbits are present for the other two symmetry axes, but for clarity
these orbits are not included in Figure 19, with the exception of the red orbits.

The red orbits are by approximation circular. The outer blue orbit now has a shape
similar to a triangle with round edges. We also see that the outer orbit (purple)
and the 8-shaped orbit (green) from the two black hole meridian plane are present.
All orbits which are symmetric in the x-axis have initial positions x0 as stated in
Table 3, y0 = 0 and z0 = 0. Their initial momenta are given by px0 = 0, py0 = 0
and pz0 = EU2

0 . We have chosen E = 1 and U0 can be determined by substituting
the initial coordinates into Eq. (4.2.2). The green orbit is defined in a tricky way,
since we chose to only have initial momentum in the z-direction. It initiates above
the uppermost black hole, after which it will encircle the other two black holes.
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Figure 19: All closed photon orbits in the triangle case which are symmetric in the
x-axis, along with the two lower circular orbits which are symmetric in the other
two axes yielding reflection symmetry. These axes can be obtained by rotating
the x-axis 120 and 240 degrees. The three black holes are separated by a distance
a = 20M .

Orbit(s) x0/M λmax T/M
Blue 13.776123097 76.6671 137.587
Green 13.759404603 127.3990 244.463
Black 13.305243408 77.7539 163.214
Orange 12.740009968 76.4870 152.192
Red (top) 12.459135065 5.7108 27.647
Purple −2.732826144 52.1999 103.226

Table 3: The initial coordinates x0, the values of the affine parameter for one orbit
λmax and the orbital periods T of the orbits symmetric in the x-axis from Figure
19.
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5 Comparing two and three black hole space-

times

In this chapter we will compare two and three black hole spacetimes. In particular,
we will compare a spacetime in which one black hole is two times more massive
than the other with a spacetime in which the separation between three black holes
is varied.

5.1 Two black holes with different mass

We start by looking at a binary system where one black hole has twice the mass
of the other black hole. We choose a cylindrical coordinate system and look at the
meridian plane only. The mass difference is embedded in the functional form of U .
If we place both black holes symmetrically at the z-axis at z = ±a and we choose
the black hole on the right to have the bigger mass, U is defined as:

U = 1 +
2M√

ρ2 + (z − a)2
+

M√
ρ2 + (z + a)2

. (5.1.1)

Figure 20 shows a contour plot of the Kretschmann scalar for this binary system,
characterized by a = 10M . We observe that the spacetime is more strongly curved
near the more massive black hole.

Figure 20: A contour plot of the Kretschmann scalar in the two black hole meridian
plane with mass difference, characterized by a = 10M .

Figure 21 shows all closed photon orbits around this binary system with a = 10M .
The same kind of orbits are present as in the case where both black holes have
equal mass. Since the black hole on the right has twice the mass of the black holes
on the left, the gravitational pull on the photon is stronger near the more massive
black hole. Therefore the photon needs to maintain a larger distance to the black
hole on the right in order to stay in its orbit.
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Figure 21: All closed photon orbits around a binary in the meridian plane with the
black hole on the right having twice the mass of the black hole on the left. The
plane is characterized by a separation constant of a = 10M .

Table 4 shows the initial coordinates on the z-axis, the values of λmax and the
orbital periods T of all orbits from Figure 21. The initial coordinate on the ρ-axis
is given by ρ0 = 0 for all orbits. The initial momenta are given by (pρ0 ,pz0) =
(EU2

0 , 0), where U0 can be obtained by substituting z0 and ρ0 into Eq. (5.1.1).
The energy is kept constant at a value of E = 1. The values of T are obtained by
numerically integrating Eq. (3.1.1).

Orbit z0/M λmax T/M
Blue 13.107806400 58.7470 119.372
Black 12.756541134 56.3660 125.784
Purple (right) 11.912191020 11.9620 52.784
Purple (left) −10.912609185 5.7109 27.647

Table 4: The initial coordinates z0, the values of the affine parameter for one orbit
λmax and the orbital periods T of the orbits from Figure 21.

We use Taylor expansions again to determine the radius r =
√
ρ2 + (z ± a)2 of the

(roughly) circular orbits from Figure 21, which are shown in purple. From a first
order expansion in a/M we obtain the following value of r for the circular orbit on
the left:

r

M
' 1− M

a
. (5.1.2)

This radius is slightly smaller than the approximated radii of the circular orbits
from Figure 3, given by Eq. (3.1.2), where both black holes have equal mass. Since
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we now have a more massive black hole present, the gravitational pull from that
black hole felt by the photon needs to be compensated by maintaining a smaller
distance to the left black hole. Substituting a = 10M in Eq. (5.1.2) results in
an approximated value of r ' 0.9M , which slightly underestimates the numerical
value of r = 0.9126M .

In a similar way we can find an approximated value of the radius of the circular
orbit on the right. We obtain the following relation:

r

M
' 2− M

a
. (5.1.3)

Substituting a = 10M gives us a radius of r ' 1.9M , which slightly underestimates
the numerical value of r = 1.9122M .

5.2 Three black holes with different separation

We will now investigate a three black hole spacetime where all black holes have
equal mass, but the distance between them varies. We will again take a cylindrical
coordinate system and restrict ourselves to the meridian plane. We will place the
black holes on the z-axis at z = −a, z = a− δ and z = a+ δ. This gives rise to the
following form of U :

U = 1 +
M√

ρ2 + (z + a)2
+

M√
ρ2 + (z − (a− δ))2

+
M√

ρ2 + (z − (a+ δ))2
. (5.2.1)

We have chosen this configuration of the three black holes, because this allows us to
look at a spacetime where the middle and right black hole are placed close together
while the black hole on the left is at a larger distance. This means we will restrict
ourselves to a scenario in which δ � a. If we take the limit δ � 0 in Eq. (5.2.1), we
observe that we get the same functional form of U as given in Eq. (5.1.1). Hence,
by choosing a small value of δ we are able to compare a three black hole meridian
plane with a two black hole meridian plane.

Figure 22: A contour plot of the Kretschmann scalar in the three black hole meridian
plane, characterized by U as given in Eq. (5.2.1) with a = 10M and δ = 0.5M .
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Figure 22 shows the contour plot of the Kretschmann scalar of the three black hole
meridian plane, characterized by U as given in Eq. (5.2.1) with a = 10M and
δ = 0.5M . Figure 23 shows the closed photon orbits in this spacetime. The initial
coordinates of all orbits are given by ρ0 = 0 and z0 as stated in Table 5. The initial
momenta are given by (pρ0 ,pz0) = (EU2

0 , 0), where E = 1 and U0 can be obtained
by substituting z0 and ρ0 into Eq. (5.2.1). Table 5 also gives the values of λmax and
the orbital period T of each orbit. The orbital period is determined by numerical
integration of Eq. (3.1.1) with U as given in Eq. (5.2.1).

Figure 23: Closed photon orbits in a three black hole meridian plane, characterized
by U as given in Eq. (5.2.1) with a = 10M and δ = 0.5M .

Orbit z0/M λmax T/M
Blue 13.194522680 58.9394 119.513
Black 12.858206565 56.5864 125.983
Green 12.105141410 12.8605 53.620
Grey 11.129727498 6.9126 106.706
Orange (right) 11.075016612 3.0241 52.199
Orange (middle) 9.867518581 3.0169 52.268
Orange (left) −10.912563078 5.7105 27.649

Table 5: The initial coordinates z0, the values of the affine parameter for one orbit
λmax and the orbital periods T of the orbits from Figure 23.
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We observe that Figure 23 bears a lot of resemblance with Figure 21. The ra-
dius r =

√
ρ2 + (z + a)2 of the left circular orbit from Figure 23 can again be

approximated using a Taylor expansion for a�M . As a result we obtain the same
relation for r as found for the left circular orbit from Figure 21, given by Eq. (5.1.2).

Since the distance between the middle and right black hole is relatively small, the
green orbit from Figure 23 can be approximated by a circle as well. We Taylor
expand for δ � a and a�M and find the same relation as given in Eq. (5.1.3) for
the radius r =

√
ρ2 + (z − a)2 of the green orbit. We can conclude that the size

of the green orbit from Figure 23 is approximately equal to the size of the right
purple orbit from Figure 21. However, the green orbit is expected to be a little bit
larger than the purple orbit, since we choose δ > 0. The radii of both orbits only
coincide when δ = 0.

Figure 24 shows a zoomed-in version of Figure 23, focused on the middle and right
black hole. The orbits which each enclose one black hole are shown in orange. We
notice that these orbits are not perfectly circular; they are somewhat squeezed.
For clarity, the coordinates of the black holes are given as black dots in Figure
24. Also note that the black holes do not coincide with the centre of the orange
orbits. Hence, the orbits are not only squeezed but also somewhat shifted towards
the outside.

The physical reason is that both black holes are placed very close together. There-
fore, the gravitational field from one black hole differs significantly at every point
of the orbit around the other black hole. Hence, a photon orbiting one black hole
experiences a relatively large gravitational pull from the other black hole in addi-
tion to the gravitational pull from the black hole it is orbiting. When the distance
to the other black hole becomes too small, the photon needs to maintain an even
closer distance to the black hole it is encircling.

Figure 24 also shows two dashed circles around each black hole. These are not
actual orbits, but are circles showing how a circular orbit would look. The centre
of all four circles coincide with the coordinates of the black holes. The diameters
of the blue circles are equal to the horizontal diameters of the orange orbits, while
the diameters of the purple circles are equal to the vertical diameters of the orange
orbits. Since the orbits are squeezed, the purple circles are bigger than the blue
circles.
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Figure 24: A direct comparison between the two smallest orbits from Figure 23
(orange) and four dashed circles which emphasise how perfectly circular orbits would
look. The diameters of the blue circles are equal to the horizontal diameter of the
orange orbits and are given by dL = 0.9403M and dR = 0.9427M for the left and
right blue circle, respectively. The diameters of the left and right purple circles
are given by dL = 0.9779M and dR = 0.9801M , respectively, and are equal to the
vertical diameter of the orange orbits.

5.3 Smiley plots

The diameters of the middle and right orange orbits from Figure 23 are not equal,
because of the presence of the most left black hole. In this section, we will study
how this black hole affects the size of the orbits around the middle and right black
hole. Figure 25 is a zoomed in version of Figure 23 and shows the green, grey and
smallest orange orbits from this plane. The black dots represent the coordinates of
the middle and right black hole. The large purple orbit from Figure 21 is also shown.
Its radius is somewhat smaller than the radius of the green orbit, as expected. Since
the plot from Figure 25 resembles a smiley, we will refer to such plots as smiley
plots.
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Figure 25: A direct comparison between the large purple orbit from the two black
hole scenario (Figure 21) and the green orbit from the three black hole scenario
(Figure 23). The grey and smallest orange orbits from Figure 23 are shown as well.
The black dots correspond to the coordinates of the middle and right black hole
from the three black hole meridian plane with separation difference.

For a more direct comparison, we will now also have a look at a two black hole
meridian plane with a small separation constant:

U = 1 +
M√

ρ2 + (z − (a− δ))2
+

M√
ρ2 + (z − (a+ δ))2

. (5.3.1)

The distance between both black holes is now given by 2δ. In order to compare
this case with the three black hole case with separation difference, we choose values
of a = 10M and δ = 0.5M . All orbits are shown in Figure 26. The black dots
represent the coordinates of both black holes. All orbits have initial coordinates
ρ0 = 0 and z0 as given in Table 6. This table also gives the values of λmax and the
orbital period T for each orbit. The orbital period is determined by numerically
integrating Eq. (3.1.1). The initial momenta of all orbits are given by (pρ0 ,pz0) =
(EU2

0 , 0) with E = 1 and U0 obtained by substituting ρ0 and z0 into Eq. (5.3.1).
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Figure 27 is a plot of all orbits from Figure 25 and Figure 26. Figure 28 is a zoomed-
in version, focused on the smallest orbits. From both figures we can conclude that
the presence of an extra black hole reduces the size of the orbits which do not encircle
this extra black hole. After all, the green, grey and orange orbits are smaller than
the blue, black and red orbits, respectively. This effect is less significant if the extra
black hole is placed at an even larger distance.

Figure 26: All closed photon orbits in a two black hole meridian plane, characterized
by U as given in Eq. (5.3.1) with a = 10M and δ = 0.5M . The black dots
correspond to the black hole coordinates.

Orbit z0/M λmax T/M
Blue 12.185091108 13.4321 50.991
Black 11.147991968 7.0560 104.027
Red (right) 11.093440039 3.1016 50.991
Red (left) 8.906559961 3.1016 50.991

Table 6: The initial coordinates z0, the values of the affine parameter for one orbit
λmax and the orbital periods T of the orbits from Figure 26.
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Figure 27: A direct comparison between all orbits from Figure 25 and Figure 26.

Figure 28: A zoomed-in version of Figure 27.
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6 Conclusion and Discussion

The work in this thesis provides a toy model for studying the motion of pho-
tons around multiple black holes. We started by looking at a relatively simple
single black hole solution, which is the Schwarzschild solution. After discussing
null geodesics around the Schwarzschild black hole, we advanced to the Reissner-
Nordström black hole. This solution is an extension of the Schwarzschild solution
since it allows the black hole to have an electric charge. By only looking at the
extremal case, where the mass and the charge of the black hole are equivalent,
and by performing a coordinate transformation, we advanced to the Majumdar-
Papapetrou solution. This allowed us to look at multiple black hole spacetimes,
where we were able to give each individual black hole a mass (and an equivalent
charge) Mj and place it at a coordinate rj .

The next step was to determine a set of equations of motion. Two equations of
motion were determined by using Killing vectors, while the rest were determined
by using a hybrid Lagrangian/Hamiltonian approach.

In chapter three, we looked at a MP spacetime with two black holes. We first
looked at the meridian plane, which allowed angular momentum for the photons
circling these black holes. There are three types of closed photon orbits in this
plane: (roughly) circular orbits, an orbit enclosing both horizons and and 8-shaped
orbit. By using Taylor expansions, expressions for the radius and the orbital pe-
riod were found for both circular orbits. The orbital periods of the outer orbit and
the 8-shaped orbit were approximated by parametrizing the shape of both orbits.
Secondly, we looked at the z = 0 plane. Various orbits were found, including two
circular orbits. After a stability analysis we could conclude that the outer circular
orbit is unstable and that more massive black holes yield more stable orbits. There
is no evident connection between the photon orbits in the meridian plane and the
z = 0 plane, since both planes are perpendicular to each other.

In chapter four, we looked at three black hole MP spacetimes. At first we looked
at the cylindrical case where all three black holes were placed on the z-axis with a
constant separation. Various photon orbits were found, including the orbits which
were present in the two black hole meridian plane. By using Taylor approximations
we could conclude that the radius of the middle circular orbit is smaller than the
radii of the left and right circular orbits. After a stability analysis we also found
that the left and right circular orbits are more stable than the middle circular or-
bit. The outer orbit was best approximated by an ellipse. Secondly, we looked at
a triangular configuration of the three black holes. Since we did not have axial
symmetry anymore, angular momentum was allowed for the photons. Therefore,
we needed to define an extra equation for the evolution of the angular coordinate φ.
We used the threefold reflection symmetry in this plane to find many photon orbits.

We compared two and three black hole MP spacetimes in chapter 5. At first we
varied the mass in the two black hole spacetime and varied the separation in the
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three black hole case. We were able to conclude that the corresponding orbits in
both spacetimes will have the same size when two black holes in the three black
hole spacetime are placed at the same position. We did an analysis regarding the
effect of an extra black hole. Second, we compared a two black hole spacetime with
small separation and a three black hole spacetime where one black hole was placed
at a relatively large distance from two closely placed black holes. We found that
the placement of an extra black hole reduces the size of the photon orbits around
the binary.

In this thesis we only looked at two and three black hole MP spacetimes. We chose
not to look at spacetimes with more than three black holes, since all the techniques
we used would be equivalent for these spacetimes. Hence, we thought that it would
be more interesting to study the properties of all orbits we found in the two and
three black hole spacetimes in more detail.

One of the properties we discussed is the stability of orbits. In general, the orbits
in all meridian planes are unstable. The initial conditions of these orbits had to be
given very precisely so that a photon could complete one closed orbit. We found
that the Lyapunov exponent is proportional to 1/M for circular orbits in this plane.
Hence, more massive black holes yield more stable circular photon orbits. In the
z = 0 plane, we found one stable and one unstable circular orbit. The Lyapunov
exponent of the unstable circular orbit exhibits the same behaviour as in the merid-
ian planes.

The instability of most orbits is closely related to some phenomena which have not
been discussed in this thesis. One of these phenomena is chaotic scattering [3]. In
all meridian planes, it is not possible to predict whether null geodesics that initiate
at infinity will escape towards infinity or fall into one of the black holes [13]. An-
other aspect related to the instability of orbits are the quasinormal modes of the
black holes [4]. Since the extension to multiple black hole makes it quite difficult to
do an elaborated analysis in both phenomena, they were not discussed in further
detail in this thesis.

The approach we used in this thesis is purely theoretical, since we made some as-
sumptions. At first we chose to work with static spacetimes, which are irrotational.
Solutions which allow objects to rotate are the Kerr and Kerr-Newman solutions.
However, a multiple black hole solution such as the Majumdar-Papapetrou solution
is quantitatively and qualitatively different from these solutions. Therefore they are
not useful for our research. Secondly, the black holes in all MP spacetimes are max-
imally charged Reissner-Nordström black holes. The extremal Reissner-Nordström
black hole is very unstable. If the mass of the black hole slightly increases, the
situation will fall back into the case where the mass is greater than the charge [5].
Also, since there has not been an observation of a charged black hole to date, it is
difficult to compare the results in this thesis with real life observations such as the
black hole picture. Nevertheless, the framework provided in this thesis is a nice toy
model for photon paths around multiple black holes.
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A Circular orbits

In this section we will derive the relations for the radius r =
√
ρ2 + z2 and the

orbital period T of circular orbits in terms of the separation constant a. We will do
this once for the middle circular orbit in the three black hole meridian plane. At
the end of these derivations we will note how these relations can be derived for the
other orbits.

A.1 Approximation of the radius

We will start with the condition of a circular orbit. For the middle circular orbit
in the three black hole meridian plane we have:

r2 = ρ2 + z2. (A.1.1)

In this equation r is the radius of the circular orbit. Therefore it is constant.
Differentiating this condition with respect to the affine parameter λ gives us:

ρρ̇+ zż = 0. (A.1.2)

Substituting Eq. (2.5.21c) and Eq. (2.5.21e) in this relation gives us:

pρρ+ pzz = 0. (A.1.3)

We can differentiate this equation again with respect to λ. This leads to:

ṗρρ+ ṗzz + pρρ̇+ pz ż = 0. (A.1.4)

After substituting Eq. (2.5.21c) and Eq. (2.5.21e) we obtain:

ṗρρ+ ṗzz +
p2
ρ

U2
+
p2
z

U2
= 0. (A.1.5)

Now we use the energy relation from Eq. (2.5.12). Since the angular momentum
is zero in the meridian plane, the effective potential is equal to 0. Substituting Eq.
(2.5.21c) and Eq. (2.5.21e) results in the following relation:

p2
ρ + p2

z = E2U4. (A.1.6)

This relation can be substituted in Eq. (2.5.21d) and Eq. (2.5.21f). As a result we
obtain

ṗρ = 2E2U
∂U

∂ρ
= E2 ∂

∂ρ
(U2) (A.1.7)

for the ρ-momentum derivative, since L = 0. For the z-momentum derivative we
get:

ṗz = 2E2U
∂U

∂z
= E2 ∂

∂z
(U2). (A.1.8)
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Now we will substitute Eq. (A.1.6), Eq. (A.1.7) and Eq. (A.1.8) into Eq. (A.1.5).
This gives us a suitable condition for circular orbits to work with, which we will
call the circular orbit equation:(

ρ
∂

∂ρ
+ z

∂

∂z

)
U2 + U2 = 0. (A.1.9)

Since this relation only depends on ρ and z and no longer on the momenta, we can
start using Taylor approximations. At first we look at U as given in Eq. (4.1.1). A
first order Taylor expansion for a�M gives us:

U ' 1 +
M√
ρ2 + z2

+
2M

a
. (A.1.10)

Now we expand the circular orbit equation (A.1.9) to the first order for a � M .
After simplifying we find:(

1 +
M√
ρ2 + z2

)(
1− M√

ρ2 + z2

)
+

4M

a
' 0. (A.1.11)

We can now substitute Eq. (A.1.1) and solve for the radius r. We obtain:

r

M
'
(

1 +
4M

a

)− 1
2
. (A.1.12)

We can Taylor expand this again to the first order for a � M . This gives us the
relation for r for large separations:

r

M
' 1− 2M

a
. (A.1.13)

The approach is very similar for the other circular orbits in all meridian planes.
Before starting with this derivation, you have to make a coordinate transformation
such that the centre of your coordinate system coincides with the centre of the
circular orbit you are looking at. This will change your U as well. For example,
if we make such a coordinate transformation in the two black hole meridian plane,
we obtain the following value of U :

U = 1 +
M√
ρ2 + z2

+
M√

ρ2 + (z − 2a)2
. (A.1.14)

In this case we are looking at the left circular orbit from Figure 3. We can now
repeat the same steps as before and arrive at the same circular orbit equation
(A.1.9), only with different U . If we now repeat the steps of the Taylor expansions,
we will reach a slightly different relation for r, which is:

r

M
' 1− M

2a
. (A.1.15)
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A.2 Approximation of the orbital period

In order to find an approximation for the orbital period T we will first try to find
an expression we can expand. Therefore we write ρ = r sinα and z = r cosα. It is
easy to show that

ρ̇2 + ż2 = ṙ2 + r2α̇2 = r2α̇2. (A.2.1)

Since we assume that we are dealing with circular orbits, ṙ = 0. We now use the
energy relation (2.5.12) with L = 0. This results in a relation for the energy E:

E =
√
ρ̇2 + ż2 = rα̇. (A.2.2)

We take the positive sign here since we need the energy to be positive. We now
substitute this relation into Eq. (3.1.1). This gives us:

T = E

∫ λmax

0
U2dλ =

∫ λmax

0
rU2α̇dλ =

∫ 2π

0
rU2dα = 2πrU2. (A.2.3)

This equation is valid for all circular orbits. We can now substitute the expanded
values of U and r, which we obtained from section A.1, into this equation. If we
look at the middle circular orbit in the three black hole meridian plane for example,
we will get the following equation for the orbital period:

T

M
= 2πU2 r

M
' 2π

(
1 +

M

(1− 2M
a )

+
2M

a

)2(
1− 2M

a

)
. (A.2.4)

We can now do a final Taylor expansion to the first order for a � M . This will
give us the approximated value of T for large separations:

T

M
' 8π

(
1 +

2M

a

)
. (A.2.5)
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B Lyapunov exponent

In this section we will derive an analytic expression for the Lyapunov exponent
λ considering the unstable circular orbit in the two black hole z = 0 plane. In
a similar way one can derive the Lyapunov exponent for the other circular orbits
considered in this thesis. This will be discussed after the derivation of the z = 0
plane.

We will start by using the fact that λ is the eigenvalue of the linear stability matrix
Kij . The elements of this matrix are given by

Kij =
∂Hi

∂Xj

∣∣∣∣
Xi(t)

(B.0.1)

where Hi is the Hamiltonian. The coordinates and momenta are given by Xi(t).
We will only consider the coordinates regarding the radial motion [7]. Therefore we
have Xi(t) = (r, pr) for the two black hole z = 0 plane. The linear stability matrix
then has the following form:

Kij =
1

ṫ


∂ρ̇

∂ρ

∂ρ̇

∂pρ
∂ṗρ
∂ρ

∂ṗρ
∂pρ

 . (B.0.2)

The Lyapunov exponent is dependent on the time coordinate. Since time is rela-
tive, we divide each element of the stability matrix by ṫ. This leads to a time scale
measured by an observer at infinity.

In the z = 0 plane we have ρ as our radial coordinate. Since we are looking at
a circular orbit, ρ has a constant value. Therefore the diagonal elements of the
stability matrix vanish. It is now given by

Kij =

(
0 K1

K2 0

)
(B.0.3)

where

K1 =
1

ṫ

∂ρ̇

∂pρ
=

1

ṫU2
(B.0.4)

and

K2 =
1

ṫ

∂ṗρ
∂ρ

. (B.0.5)

Now we can easily obtain the eigenvalues of Kij and an expression for λ:

λ =
√
K1K2. (B.0.6)

We would like to specify λ in terms of U . Therefore we have to find a suitable
expression for K2. That’s why we first have a look at the energy relation from Eq.
(2.5.12). Differentiating with respect to ρ yields

ρ̇
∂ρ̇

∂ρ
= −1

2
V ′, (B.0.7)
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where V is the effective potential and V ′ = ∂V/∂ρ. Using this relation, the energy
relation and Eq. (2.5.21c) we can show that

ṗρ =
∂L
∂ρ

= ρ̇
∂

∂ρ

(
U2ρ

)
=

1

2U2

∂

∂ρ

(
U4
(
E2 − V

))
. (B.0.8)

Now we will use the fact that we are dealing with a circular orbit. This means ρ̇ = 0.
As a result we obtain E2 = V from Eq. (2.5.12) and V ′ = 0 from Eq. (B.0.7). Note
that this does not imply that V ′′ = 0. We can now construct a suitable expression
for K2 by differentiating Eq. (B.0.8) with respect to ρ and using these derived
relations. We find

K2 =
1

ṫ

∂ṗρ
∂ρ

= −1

2
U2V ′′. (B.0.9)

Since we now have our expressions for K1 and K2 we have found an expression for
λ in terms of U :

λ =

√
−V

′′

2ṫ2
. (B.0.10)

We will now find an expression for V ′′. We first rewrite the energy relation:(
L

E

)2

= ρ2U4. (B.0.11)

Here we have made use of the relations V = E2 and V ′ = 0. Differentiating Eq.
(B.0.11) with respect to ρ and rearranging terms gives us

U ′ = − U
2ρ
. (B.0.12)

We now differentiate Eq. (2.5.13) twice with respect to ρ and make use of the
relations in Eq. (B.0.11) and Eq. (B.0.12). We find

V ′′ = 2E2U4

(
3U − 4ρ2U ′′

2ρ2U5

)
. (B.0.13)

For a final step we substitute this relation into Eq. (B.0.10) and make use of Eq.
(2.5.21a). We find an expression for the Lyapunov exponent in the z = 0 two black
hole plane in terms of U :

λ =

√
−3U + 4ρ2U ′′

2ρ2U5

∣∣∣∣∣
ρ=ρout

. (B.0.14)

In this relation, ρout is the radius of the unstable circular orbit as stated in Eq.
(3.2.7). By substituting this radius into U and its second derivative we obtain λ as
a function of the mass M , resulting in the graph from Figure 9.
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This analysis can be extended for the circular orbits in the three black hole meridian
plane. The radius of these orbits is given by r2 = ρ2 + z2 and is constant. A
small drawback of the meridian plane is that r is not one of the coordinates which
specify your spacetime. However, ρ and z are. This leads to the configuration
Xi(t) = (ρ, pρ, z, pz) for the coordinates and their momenta. As a result we obtain
a 4× 4 stability matrix:

Kij =
1

ṫ



∂ρ̇

∂ρ

∂ρ̇

∂pρ

∂ρ̇

∂z

∂ρ̇

∂pz
∂ṗρ
∂ρ

∂ṗρ
∂pρ

∂ṗρ
∂z

∂ṗρ
∂pz

∂ż

∂ρ

∂ż

∂pρ

∂ż

∂z

∂ż

∂pz
∂ṗz
∂ρ

∂ṗz
∂pρ

∂ṗz
∂z

∂ṗz
∂pz


(B.0.15)

We will find an analytic expression for λ by determining the eigenvalues of this
matrix.
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