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Abstract

The gravitational wave event GW150914 was the first event ever measured by a gravitational wave
detector. It is found that this gravitational wave signal is caused by the inspiraling of two black holes
orbiting around each other. It is a very loud event, in the sense that the signal can be easily distinguished
from the background noise. This makes the data from the event therefore easy to work with, for example
to test if totally different sources, with different frequency behaviour in time, could fit the data as well
as the original binary model does. So, this thesis aims to invent astrophysically likely or unlikely models
and to confront them with the data obtained from the GW150914 event. For each different model, the
gravitational wave energy flux is linked to the mechanical energy loss, from which a relationship can be
obtained between the frequency and the time. This obtained relationship is fitted to the data obtained
from the LIGO detectors in Hanford and Livingston. This is done first for the original binary model, after
which 2 different models are studied: a binary system with slightly time varying mass, and a rotating
rigid spirally shaped mass distribution.
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Introduction

Theoretical gravitational wave research is done for around one hundred years by now, with Dr. Albert
Einstein himself at the foundations of it. He published his theory of General Relativity around 1915,
whereas he proceeded working on his theory after his publication. He could explain several features
of nature, that could not be explained with the laws of Newton, such as gravitational waves. Albert
Einstein predicted this feature, although there were no instruments present at that time to test his pre-
diction experimentally. Nowadays, there are multiple detectors with the ability to detect gravitational
wave signals, such as the Laser Interferometer Gravitational-Wave Observatory, abbreviated as LIGO.
It is worth mentioning briefly how the current state of the art gravitational wave detectors are founded
from the beginning and what the future plans of gravitational wave detection will be.

In the 1960’s, researchers Mikhail Gertsenshtein and Vladislav Pustovoit start thinking to built a light
interferometer in Moscow Russia, whereas several years later Joseph Weber and Rainer Weiss in America
came up with a likewise idea. Both ideas arose in order to test Einstein’s prediction: the existence of
gravitational waves. But a real working detector was not built at that time. In 1990, the first funding
for the LIGO observatory was given, and in 1992 the locations are chosen to build a detector around
Livingston and one around Hanford, United States of America. These detectors belong to the first gen-
eration of gravitational wave detectors. From 1994 up until 1998 LIGO was built at these two locations,
whereas the installation was done from 1999 up until 2002. The initial LIGO observations start at around
2002, but until 2010 there were no detections of gravitational waves at all. At the year 2004, the project
’enhanced LIGO’ started, after which a multi-year shutdown took place to improve LIGO even more,
called ’advanced LIGO’. Mid September of 2015, the 14th of September to be exactly, advanced LIGO
start doing its first science observations, with a sensitivity of four times the sensitivity the initial LIGO
detectors had. Furthermore, there exist another detector called VIRGO, which is built around the year
2000. This is also a Michelson Interferometer, just like LIGO. This detector is located near Pisa in Italy.
All these three current existing detectors together form the LIGO-Virgo Network (abbreviated as LVN),
which will be expanded in the future by the addition of several detectors to be built. For Example, in
2020, a fourth gravitational wave detector became operational (see Ref. [9]). This detector is located
in Kamioka Observatory in Gifu Prefecture, Japan. This project is called Kamioka Gravitational Wave
Detector, abbreviated as KAGRA. It has recently joined the LVN (in March 2022), such that the LVN
network currently consists of 4 detectors. In the future, one of the projects that will join is called LIGO
india (Ref. [7]), which is currently being built in Aundh, India. First, the LIGO detectors in Hanford
and Livingston will be updated to the so called Advanced+ version of the LIGO advanced project, after
which they will become operational in this updated version in 2026. Soon after this, the detector in
Aundh India will also become operational in the updated version (Advanced+ version). These belong to
the second generation of gravitational wave detectors. Another detector, called the Einstein Telescope,
is planned to be built in Europe. This will become a gravitational wave detector of the third generation.
The sensitivity of this detector will be an order of magnitude larger than the sensitivity of the second
generation gravitational wave detectors, whereas it will also have a wider accessible frequency band. With
this third generation detector, much more accurate measurements can be done, and also gravitational
wave signals from objects with larger masses can be measured, due to the improved sensitivity (Ref. [6]).

As is already mentioned, on September 14th in 2015, the first gravitational wave event was measured,
given the name GW150914. Both signals measured at the detectors in Livingston and Hanford show a
very strong correlation, that sticks out above the background noise, such that it must be a gravitational
wave signal. The researchers of the LIGO collaboration paper Ref. [1] applied a simplified approach
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to estimate the parameters of this model. The actual parameter estimation is more complex, but this
simplified approach works really well. It is determined that this signal comes from the merging of two 30
solar mass black holes that orbited around each other, where their separation distance becomes smaller
as time evolved. The event lasted roughly 0.2s and the frequency rose up from 35 to 250Hz within 8
cycles. This signal is in the audible range, and can be resembled with the ’chirp’ of a bird. The mass
parameterM that shows up in the calculations, is therefore named the ’chirp mass’. This parameter is
a certain function of both the masses in the binary system, which has a very specific form due to the
fact that the parameters with the dimension ’mass’ are showing up and are collected in this form. More
insights about the chirp mass can be found in the first chapters of the first part of this Thesis.
After this first event, many more events were measured with these LIGO detectors, but this first signal
is very unique in the sense that it is a loud signal. The wave pattern can be recognised very easily in the
data (after a whitening process), whereas this is hard for the signals detected from other events. This
makes this event very approachable to work with. The frequency increase as a function of time can be
estimated, where also the amplitude increase in time can be estimated. In general, the frequency can not
be estimated very well for a usual gravitational wave signal obtained by a LIGO detector, because the
signal can be recognised as easily as it can be done for this signal. This means that the zero crossings
of the wave signal cannot be determined very accurately. Nevertheless, for this signal the estimations
of the frequency can be done, because this gravitational wave signal is a loud signal. After a whitening
process, the signal can be clearly distinguished from the background noise. The wave pattern can be seen
very easily in the whitened signal (i.e. the signal really looks like a sinusoidal curve with an increasing
frequency), such that zero crossings of the signal can be determined very precisely. From this, a frequency
estimation can be done by using the time difference between successive zero crossings. For other signals,
the wave signal does not look much like a sinusoidal curve, due to the large influence of the background
noise. Also the power law between the gravitational wave strain (amplitude) and the time is estimated
from the data. This is done by looking at the maxima of the signal, from which the amplitude increase
can be estimated. In this relation, the effective distance can be estimated, but for this a very accurate
value of the order of magnitude of the gravitational wave amplitude is needed.

This master thesis aims to invent crazy, (astro) physically likely or unlikely models that produce gravita-
tional waves and to confront them with the data from the very first gravitational wave event GW150914.
The basic theory here that is used, is the original Theory of General Relativity published by Albert
Einstein around 1915. This thesis does not describe alternative theories for gravity, but only covers grav-
itational wave sources within the (linearized) General Theory of Relativity. For each model, a theoretical
derivation is done, from which a relationship is found between the frequency of the gravitational wave
and the time. This relation is then fit through the data of the event GW150914, in order to check if
the crazy model in question could produce gravitational waves in the same way as the binary black hole
merger of the original event did. For each model, only the mass, time of merging (the coalescence time)
and in one case the mass rate of change are to be determined. The most probable values that are found
for these parameters and their probability density functions are used to determine if a model can be fit
well to the data (it is physically likely) or if a model does not fit the data really well (it is physically
improbable). So, the research question is: Could other models match the data from the gravitational
wave event GW150914 as well as the original model of the inspiraling binary system does?

In the first part, the basic concepts of gravitational wave theory are derived and explained. First, the
original model is derived. This is done in order to get familiar with processing gravitational wave data
and to determine, in the same way as is done in Ref. [1], a value for the physical parameters called the
chirp mass and the coalescence time. Also the power law between the dimensionless gravitational wave
strain and the time is estimated for both the data from Hanford and from Livingston, which was not done
by Ref. [1]. After this model, an inspiraling binary system is considered, but this time the chirp mass
is made time dependent, such that a third unknown joins the other two. As a third model, a spirally
shaped rotating rigid mass distribution is theoretically derived, which as again two unknown parameters.
After this, it is explained how the gravitational wave data is processed with Python and also the Bayesian
statistics used to match the theoretical models to the data is explained. Thereafter, all three models are
matched to the data in the second part, after which the most probable values and likelihood function
as well as marginal probability density functions are shown for the fit parameters. It is determined how
likely these values for the fit and model parameters are for the chosen model. An elaborated conclusion
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and discussion about the models and their obtained values can be found in the third part of this thesis.
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Part I

Theoretical Background

7



Chapter 1

Theoretical concepts of gravitational
waves

1.1 Linearized Gravity
In the General theory of Relativity, spacetime curvature is related to the mass and energy. In ten
equations, Einstein established how matter tells spacetime how to curve, and how spacetime tells matter
how to move (Ref. [4]):

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.1)

with Rµν the Ricci tensor, R the Ricci scalar, gµν the metric tensor of the spacetime and Tµν the stress
energy tensor. The last tensor describes the matter/energy distribution present in a spacetime. The
left hand side together is defined as the Einstein tensor : Gµν . These so called Einstein Equations are
non-linear and second order differential equations, which makes them hard to solve. But in physics, there
is one very powerful tool: approximation by perturbation. In this method, a spacetime is assumed to be a
background spacetime, with a small perturbation caused by a certain source S (whose energy/momentum
distribution is described by Tµν). The ten Einstein Equations are linearized in the sense that for the
metric, the following ansatz is filled in into Equation 1.1:

gµν(x) = ηµν + hµν , with |hµν | � 1. (1.2)

One can see here that the metric is written as the background Minkowski metric (ηµν) with a small
perturbation (hµν).

1.2 gauge transformations
In the linearized theory of Gravity, there are certain gauge transformations that can be chosen that
simplify calculations, but do not change the physics (hence it is a gauge transformation). Because there
are ten linear independent Einstein Equations, there are ten independent components of the perturbation
(both due to the fact that all the tensors in Equation 1.1 are symmetric tensors). With the help of the
gauge freedom, eight of the ten components can be fixed. There are several possibilities, but for the
purpose of this thesis, the Lorenz gauge together with the transverse traceless gauge are used. In each
inertial system one considers, these gauge transformations can be done. First, the Lorentz gauge is
applied. The linearized Einstein Equations take then the form:

�h̄µν =
16πG

c4
Tµν , (1.3)

where h̄µν ≡ hµν − 1
2hηµν is the so called trace reversed metric perturbation and the h is the trace of

the metric perturbation in Minkowski space. When knowing this ‘h bar’, one can easily find the metric
perturbation by using the reversed trace property. This gauge fixing takes away four out of the total
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eight gauge degrees of freedom.

There is still additional gauge freedom left. This is called the transverse traceless gauge, and it is defined
such that the radiative part of the trace reversed metric perturbation satisfies for a non-stationary source
(i.e. depending on time):

h̄0µ ≡ 0 and h̄ ≡ 0. (1.4)

In the transverse traceless gauge, the metric perturbation is traceless, such that holds h̄µν = hµν . Fur-
thermore, each temporal component of the perturbation is 0, i.e. hti = htt = 0, such that only the spatial
part of the metric perturbation needs to be taken into account. These gauge transformations can take
the radiative part of the metric perturbation to:

hµν = h(+)e(+)
µν + h(×)e(×)

µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (1.5)

In each frame, the metric perturbation can be transformed into the form of Equation 1.5 due to the addi-
tional gauge freedom. This form of hµν is extremely helpful and handy in the frame where a gravitational
wave is propagating in the z-direction, because this frame will enter the detector. In this gauge, the
distinction can be made between + and × polarization, which is useful in the frame of the propagating
wave. This is due to the fact that a detector is assumed to be able to distinguish between these 2 po-
larizations. It is important to note that in general the metric perturbation is not yet in this form in the
frame where the wave is travelling in the z-direction. In Appendix B.1 it can be seen how to transform
a general tensor into the transverse traceless gauge in a general frame of reference.

1.3 quadrupole formula
The solution of Equation 1.3 is expressed in terms of the mass quadrupole moment tensor, for convenience
defined here as:

Qij ≡
∫
ρ(
⇀
x)

[
xixj −

1

3
|⇀x |2δij

]
d3x, (1.6)

This tensor is defined as a traceless tensor, which stays traceless when a coordinate transformation is
applied between two (with respect to each other) stationary inertial frames. This form appears in the
derivation of the so called quadrupole formula. The quadrupole formula was discovered by Albert Einstein
himself in 1918. He linked the metric perturbation to the change in time of the mass quadrupole moment.
He did this using the conservation of energy-momentum of the source and the divergence theorem of
Gauss. The quadrupole formula in all its glory is given by:

hij(t, r) =
2G

c4r
· Q̈ij(t− r/c). (1.7)

In this equation, t is the time measured on a clock at a distance r from the source and the dubble dot
above Qij represents the second time derivative. This is known as the famous quadrupole formula. This
is only valid for compact sources causing a small perturbation on the background spacetime. Compact
sources are sources that have a small diameter compared to the distance between the source and the
point where the gravitational wave is regarded, i.e. dS � r. Because the quadrupole moment tensor
Qij appearing in Equation 1.7 is defined to be traceless (and stays traceless in each frame that is used
here), the hij in Equation 1.7 is immediately traceless too (such that the bar above the hij is not needed,
because hij = h̄ij if the first one is traceless). This gives that the bar can be left out in the quadrupole
formula (Equation 1.7) Keep in mind that the hij in the quadrupole formula is already traceless, but not
necessarily transverse yet. To make it transverse, see Appendix B.1 how to take a general tensor to the
transverse traceless gauge.

1.4 Conversion between wave frame and source frame
In this thesis, only sources are considered that rotate in one plane around a constant rotational axis. For
convenience, a frame is introduced where z-axis is aligned with the rotational axis, and thus in which the
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mass distribution rotates in the xy-plane. The mass quadrupole moment tensor is calculated the easiest
way in the frame in which the mass distribution is rotating around its own z-axis due to rotational
symmetries, whereas the most convenient way to express the metric perturbation is in the TT gauge in
the frame in which the wave propagates in its z-direction. Via 2 constant coordinate rotations around
coordinate axes, the frame in which the mass distribution is rotating around its z-axis can be linked to
the frame of the wave. See Figure 1.1 for a visualization of the needed coordinate rotations and the
relation between the source frame and the wave frame.

Figure 1.1: Relation between the source frame (black coordinate system) and the wave frame (red coor-
dinate system). The source is represented as the green circle, which is small compared to the distance
between source and detector. It is assumed to be rotating around the ẑ axis in the xy-plane. The 2
coordinate rotations are denoted with β and i, where i is the inclination angle. The propagation vector
of the wave is aligned with the usual spherical unit vector r̂ defined in the source frame.

Because in this thesis the used mass distributions are assumed to stay within the xy-plane and rotate
around the z-axis in the source frame, the coordinate rotation in the β direction is therefore in fact redun-
dant; it operates as an offset in this direction, because the mass distribution is rotating in this direction.
After these rotations, the second time derivative is taken from the obtained quadrupole moment tensor.
Then it is evaluated at the retarded time, and as a last step the obtained tensor is taken to the transverse
traceless form using the steps in Appendix B.1. In this form, the h+ and h× can be extracted. Further
on in this thesis, the quadrupole moment and from this the metric perturbation are calculated for each
different model.

In the wave frame, the x̂′ and ŷ′ axis can be oriented differently around their ẑ′-axis for each situa-
tion, as long as both axes are perpendicular to each other and as long as they form a right handed
coordinate system. This rotation is elaborated on later and is denoted as the polarization angle ψ.

1.5 Measuring the gravitational wave amplitude at a detector

It is important to note that the distance travelled by the wave |⇀x | ≡ r is much larger than the radius
of the Earth, i.e. r � Re, where Re is the radius of the Earth. This means that the waves passing the
Earth (and thus the waves entering the detector) can be seen as plane waves. The metric perturbation
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tensor can then be decomposed into plane waves as a Fourier series as follows:

hij(t,
⇀
x) =

∑
A=+,×

eijA

∫ ∞
−∞

df h̃A(f)e−2πif(t−n̂·⇀x/c) ≈
∑

A=+,×
eijA

∫ ∞
−∞

df h̃A(f)e−2πift, (1.8)

with eijA the + or × polarization tensors of Equation 1.5. In the last step, the fact is used that the wave
length λ of the gravitational wave is much larger than the size of the detector d, i.e. d � λ. Therefore,
the wave is assumed to be constant in space at sizes of the order of the size of the detector d (i.e. hij
does not have a spatial dependence at the detector). The choice of the origin of the coordinate system
in which this wave is described can therefore be chosen arbitrarily. The origin is chosen to be located at
the detector, such that x = 0. The output of the detector is a scalar, whereas hij is a tensor. The output
of the detector will have the form:

h(t) =
∑

A=+,×
DijeAijhA(t) =

∑
A=+,×

FA(θ, φ, ψ)hA(t), (1.9)

where Dij is the detector tensor translating the metric perturbation hij to a scalar gravitational wave
strain hA. Here A can be either + or ×. This detector tensor is for a detector with one arm along the
x-axis and the other arm along the y-axis of the detector frame (such as the detectors in Livingston and
Hanford) defined as:

Dij =
1

2
(x̂ix̂j − ŷiŷj). (1.10)

The minus sign is due to the fact that in the detector, one needs to calculate (and measure) the path
difference between the arms along the x- and y-axis. One wants to measure a symmetric and trace free
tensor (this is how the metric perturbation is constructed using the transverse traceless gauge), such that
the detector tensor also shares these properties. The input for the detector can therefore be written as:

hD(t) =
1

2
(x̂ix̂j − ŷiŷj)eij+hD+ +

1

2
(x̂ix̂j − ŷiŷj)eij×h

D
× =

1

2

[
hxx+ − h

yy
+

] ∣∣∣∣
SD
, (1.11)

where the subscript D denotes that this quantity is calculated in the frame of the detector. Both hxx+

and hyy+ must be in the frame of the detector. There is thus one transformation needed in order to obtain
the gravitational wave amplitude seen in the frame of the detector as function of the gravitational wave
amplitudes in the frame of the wave. This is the transformation described in Figure 1.2 below:

11



(a) Figure that visualizes the coordinate rotations
from the frame of the wave (red frame) to the frame
of the detector (blue frame). There is a rotation
needed with an angle φ around the ẑ-axis, and a
rotation with an angle θ around the ŷ axis. After

this, the system needs to be rotated around the new
obtained ẑ-axis with an angle ψ. The propagation
vector of the wave k̂ is in the frame of the source
aligned with the ẑ′ axis, but is aligned with the

spherical unit vector -r̂ defined in the detector frame.

(b) Figure that visualizes the polarization angle ψ. The θ̂
and φ̂ axes are the in the detector frame defined spherical
unit vectors in the θ and φ-direction respectively. The

polarization angle ψ is defined as the angle between the x̂′
unit vector in the wave frame and the φ̂ vector defined as
the spherical unit vector in the φ-direction in the detector

frame (defined in the usual way).

Figure 1.2: Coordinate transformation between wave frame and detector frame. The detector frame is
denoted with the blue coordinate system, whereas the wave frame is denoted with the red coordinate
frame. The θ̂ and φ̂ are the usual spherical unit vectors defined in the detector frame.

From source to detector, this means that a rotation with an angle ψ around the ẑ′ axis is needed first, to
align the x̂′-axis with the φ̂ unit vector (and to align the ŷ′-axis with the θ̂ unit vector). This rotation
takes the polarization amplitudes in the wave frame to:

h+ → h+ cos(2ψ) + h× sin(2ψ) (1.12a)
h× → h× cos(2ψ)− h+ sin(2ψ), (1.12b)

With this rotation, the x̂′ axis is aligned with the φ̂ unit vector. Now, a rotation around the z-axis with
an angle φ is needed, followed by a rotation around the y′-axis with an angle θ (keep in mind that the ẑ′
axis is oriented in the negative r̂-direction defined in the detector frame). Applying these rotations, one
obtains a relationship between the metric perturbation tensor in the frame of the detector as function
of the position in the sky (θ, φ), as well as the + and × polarization amplitudes in the frame of the
wave. Taking the rotation in Equation 1.12 into account, the gravitational wave strain detected at the
detector becomes also a function of the polarization angle ψ. As can be seen from Equation 1.11, only
the difference between hxx+ and hyy+ in the detector frame needs to be calculated. With the calculation
rules for rotations around coordinate axes as is visualized in Figures 1.2 and 1.1, the following is obtained
for this difference:

hD(t) =h+

[
cos(2ψ) ·

(
1 + cos2(θ)

2

)
cos(2φ)− sin(2ψ) · cos(θ) · sin(2φ)

]
︸ ︷︷ ︸

F+(θ,φ,ψ)

+ h×

[
cos(2ψ) · cos(θ) · sin(2φ) + sin(2ψ) ·

(
1 + cos2(θ)

2

)
cos(2φ)

]
︸ ︷︷ ︸

F×(θ,φ,ψ)

,

(1.13)

where θ and φ represent the position in the sky with respect to the detector and ψ the polarization angle
of the wave. Here F+ and F× are antenna response functions for the +-polarization and ×-polarization
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respectively. These antenna response functions are different for each different detector, because each
detector is oriented in a different way with respect to the wave (i.e. for each detector, the θ and φ may be
different). If the quadrupole moment tensor is calculated in the source frame, transformed to the wave
frame and put into the TT gauge form, Equation 1.7 can be used to determine the h+ and h× in the
wave frame. With these, one can calculate the wave strain hD that is measured by the detector, if one
knows the angles θ and φ at which the wave is coming in. When more and more detectors are used, the
estimation of θ and φ for each detector can be made more and more precise.

In this thesis, it is enough to work with a polarization angle ψ = 0, but for completeness it is taken
into account in this derivation. If ψ = 0 (see Ref: [5]), the expressions for the antenna response functions
in Equation 1.13 reduce to the expressions of the antenna response functions below:

hD(t) =
1

2

(
hxx+ − h

yy
+

) ∣∣∣∣
D

= h+ ·
(

1 + cos2(θ)

2

)
cos(2φ)︸ ︷︷ ︸

≡F+(θ,φ,ψ=0)

+h× · cos(θ) sin(2φ)︸ ︷︷ ︸
≡F×(θ,φ,ψ=0)

. (1.14)

For longer lasting signals, the rotational motion of the Earth needs to be taken into account, because
the detector is then moving with respect to the gravitational wave signal. This can be done via a
transformation to the Geogentric frame of the Earth. The signal that is used here last approximately 0.2
seconds, such that the rotational influence is really small, but for longer signals, this needs to be taken
into account.

1.6 Energy of a gravitational wave
The Einstein Equations are linearized to obtain an equation for the small perturbation of the metric hµν
caused by the source only, i.e. the energy momentum tensor Tµν only contains energy and momentum
of the source. This is due to the fact that only compact sources are considered, such that the energy
momentum tensor Tµν is of the same order as the metric perturbation, i.e. |Tµν | << 1. If the Ein-
stein equations are expanded up to second order on both sides in Equation 1.1, the first order terms
again result in Equation 1.3, whereas the second order on the left hand side is related to the second
order part of the energy momentum tensor. As is already explained, the source only gives a first or-
der term in the energy-momentum tensor, such that can be concluded that the second order term of
the energy-momentum tensor must be the energy-momentum of the gravitational wave itself because
this phenomenon also contains energy and momentum, which is much smaller compared to the energy
and momentum of the source. This second order part of the energy momentum tensor is denoted with tµν .

Energy in general relativity is in first place not really meaningful, because one can transform at each
spacetime point to a freely falling frame to undo all gravitational effects. To make a meaningful definition
of energy, one should average over the second order terms of the Einstein tensor (Ref. [4]):〈

G(2)
µν

〉
=

8πG

c4
tµν . (1.15)

Expanding the metric to a second order, collecting all second order terms and time averaging the result,
gives one the tools to determine the energy flux of a gravitational wave. In the end, this leads to the
energy per unit time per solid angle:

dP

dΩ
=

r2c3

32πG

〈
ḣTTij ḣ

ij
TT

〉
=

r2c3

16πG

〈
ḣ2

+ + ḣ2
×

〉
, (1.16)

with the metric perturbation tensor and time derivative of the quadrupole moment tensor in transverse
traceless gauge. In transverse traceless gauge, these polarization amplitudes are defined, such that the
relation in Equation 1.17 only holds in TT gauge. It does not matter in which frame the hµν is changed to
the transverse traceless gauge (as is explained before), but this is most convenient in the frame in which
the wave is travelling in the ẑ-direction. The i and j here only run over the spatial part of the metric
perturbation tensor, because each (partly) temporal component is 0. To obtain a differential equation
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for the frequency evolution in time, one integrates Equation 1.16 over the angles β and i in spherical
coordinates to obtain the total radiated energy per unit time:

dEGW

dt
=

∫ 2π

0

∫ π

0

dP

dΩ
(i, β) · sin(i)didβ (1.17)

Here i and β are chosen to represent the usual θ and φ spherical angles, but are named different because
θ and φ are already reserved for the position of the source in the sky with respect to the detector.

After obtaining the energy of the gravitational wave per unit of time, one equates this to the mechanical
energy loss per unit time of the source. From this, an equation can be derived for the frequency as
function of time. This is done for the different models later on.
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Chapter 2

Model of inspiraling binary: original
derivation

2.1 Introduction
This thesis aims to find alternative models that are confronted with the data from event GW150914, but
first the theoretical frequency-time relation of the original model is derived, after which this model is
matched to the data. This is done in the same way as the researchers of the LIGO collaboration paper
Ref. [1] did in a simplified way as the original parameter estimation. This thesis does not replace the
work done by the researchers of this article, but it is a good way to get familiar with deriving theoretical
models and with processing gravitational wave data in a simplified version.

2.2 Setup of the system
Assume two black holes orbiting around each other. One black hole may have a larger mass than the other
(without loss of generality one can define one to have a larger mass). The orbit they follow is assumed to
be small and circular, and they are assumed to cause a small perturbation on the Minkowski background
metric. Together with the fact that the source is far away from Earth (i.e. the radial distance between
Earth and source denoted with r is much larger than the source diameter dS), this also means that this
source can be assumed to be a compact source, such that the quadrupole Formula in Equation 1.7 (valid
for compact sources) can be used. This source is thus assumed to cause only a small perturbation, which
means that this source can be treated Newtonian. It satisfies therefore the laws of Kepler. As can be
found in mechanics textbooks like Ref. [4], the 2 body problem is split into 2 separate problems: one
equation of motion for the centre of mass, and one equation of motion for the reduces mass µ which is
defined as: µ ≡ (M1M2)/M , with M the total combined mass. The orbit is circular with radius a, which
means that the law of Kepler takes the following form for this binary system:

a3 =
MG

ω2
(2.1)

See Figure 2.1 to see how the mass distribution looks like at a time t. The orbit is in the xy-plane without
loss of generality, where the z-axis is pointing out of the paper. The masses stay in this plane due to the
conservation of angular momentum; angular momentum cannot be changed significantly by gravitational
waves at the time scales of the merging process (Ref. [1]).
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Figure 2.1: Geometry of the inspiraling binary system. Without loss of generality mass M1 is assumed to
be the larger mass and M2 is assumed to be the smaller mass. The radius a and orientation at time t can
be seen in the figure. The orientation at time t = 0 (the starting configuration) can be chosen arbitrarily
by fixing the coordinate system initially at a different angle.

The quadrupole moment tensor in the frame of the source is calculated to be:

Qij =
µa2

2
·

 1
3 0 0
0 1

3 0
0 0 − 2

3

+
µa2

2
·

cos(2ωt) sin(2ωt) 0
sin(2ωt) − cos(2ωt) 0

0 0 0

 . (2.2)

The coordinate transformation described in Section 1.4 is a constant, time independent coordinate trans-
formation. It therefore does not matter if the time derivative is taken first or if this coordinate trans-
formation is done first. The second time derivative of the quadrupole moment tensor of Equation 2.2 is
taken, and the obtained tensor is taken into the transverse traceless (TT) gauge, after which the metric
perturbation in TT gauge is calculated via the quadrupole formula of Equation 1.7. The following form
of the polarization amplitudes is obtained:

h+ =− 4µGa2ω2

c4r
·
[

1 + cos2(i)

2

]
· cos(2ω(t− r/c)) (2.3a)

h× =− 4µGa2ω2

c4r
· cos(i) · sin(2ω(t− r/c)). (2.3b)

With these polarization amplitudes, the following is obtained for the gravitational wave power per solid
angle (using Equation 1.16, see Ref. [4]):

dP

dΩ
=
µ2Ga4ω3

2πc5
·
[
1 + 6 cos2(i) + cos4(i)

]
, (2.4)

such that the total radiated energy per unit of time equals (use Equation 1.17):

dEGW

dt
=

∫ 2π

0

∫ π

0

dP

dΩ
· sin(i)didβ =

32Gµ2a4ω6

5c5
(2.5)

Keep in mind that in this derivation, the angular frequency is only slightly changing in time on time
scales of one single rotation T , but it does change significantly on larger time scales τ � T , time scales
of multiple rotations.

2.3 Energy change of the system
As we know from Keplers law for circular orbits, the potential energy is minus 2 times the kinetic energy,
such that the total mechanical energy of two black holes orbiting around each other in circular orbits
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with radius a and rotational angular frequency ω equals:

Emech = −1

2

GMµ

a
. (2.6)

As this binary black hole system shrinks, the radius obviously decreases. Because of Keplers law (which
is in fact conservation of angular momentum), this means that the binary spins up. With the help of
Equation 2.1, the increase of the radius per unit of time (it is decreasing, so the increase is negative)
can be linked to the increase in frequency per unit of time. The total increase in mechanical energy as a
function of the time derivative of the frequency then becomes:

dEmech

dt
=
GMµ

a2
· da

dt
=
GMµ

a2
· −2

3

MG

a2ω3
= −2

3
· M

2/3G2/3µ

ω1/3
· ω̇ (2.7)

Because Equation 2.7 is the increase in mechanical energy and Equation 2.5 represents the energy that
is taken away by the gravitational wave, this means there needs to be a minus sign in front of Equation
2.7 to represents the mechanical energy loss. Equating these gives the following differential equation:

ω̇ =

(
96

5

)
· ω

11/3

c5
· (GM)

5/3
, (2.8)

whereM is the Chirp mass defined as:

M≡ (M1M2)3/5

(M1 +M2)1/5
= µ3/5 · (M1 +M2)2/5. (2.9)

The chirp mass M is the effective mass of the binary system. To compare: In Celestial mechanics, the
reduced mass µ is the effective mass. In the two body problem in Celestial mechanics, the problem of
two bodies orbiting around each other is reduced to a problem where a single mass µ is orbiting around
an object that has a mass equal to the sum of the 2 masses. In this Inspiraling Binary problem, there is
effectively a single object with a massM that is orbiting another object standing still. This system then
has a quadrupole moment tensor of Equation 2.2, where the orbital radius a is decreasing.

2.4 The gravitational wave frequency as a function of time
In the quadrupole moment of Equation 2.2, it can be seen that the angular frequency of the gravitational
wave equals twice the rotational angular frequency (this holds as well for the normal frequency f). This
means that the following ω in Equation 2.8 needs to be substituted by the following to obtain a differential
equation for the frequency of the gravitational wave:

ω =
ωGW

2
=

2πfGW

2
=
fGW

π
. (2.10)

The solution of the differential equation for fGW is the evolution of the gravitational wave frequency in
time (Ref. [1]):

f
−8/3
GW =

(8π)8/3

5
·
(
GM
c3

)5/3

· (t0 − t). (2.11)

In this formula,M is the chirp mass defined in Equation 2.9 and t0 is the time of coalescence (the time
when the binary is merged into one massive black hole). For convenience, the mass will be measured in
solar masses. This is due to the fact that the numbers are small compared to SI units of mass.

2.5 Deriving the amplitude as function of time

2.5.1 Relating the amplitude of a gravitational wave to the physical distance
To derive how the amplitude as function of time behaves, Ref. [2] derived a relation between the gravi-
tational wave amplitude hD as function of the time t. Mind that there is a minus sign in front, but this
does not matter since the absolute value is taken to study the behaviour of the amplitude in time. The
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relation between hD and the time is found by using Equation 1.11 and Equation 2.11, together with the
rule to combine a cosine and a sine described in Appendix B.3:

hD(t) = −
(
GM
c2Deff

)
·
(

t0 − t
5GM/c3

)−1/4

· cos(2ω(t− r/c) + 2φ0), (2.12)

where t0 is the coalescence time of arrival of the signal at the detector, φ0 is a phase (not of interest here,
but can be tuned using the β rotation described in Section 1.5) and Deff the effective physical distance
defined as:

Deff ≡ D

[
F 2

+ ·
(

1 + cos2(i)

2

)2

+ F 2
× · cos2(i)

]−1/2

. (2.13)

Here F+ and F× are the antenna response functions for the +- and ×-polarizations respectively (Ref.
[5]). These are functions that are characteristics of the detector used. See Section 1.5 for the definitions
of the antenna response functions F+ and F× and their θ and φ dependence.
In Equation 2.13 there is also an angle of inclination i, which is the angle between the normal vector to
the orbital plane and the line connecting the origin of the source and the origin of the detector. This has
nothing to do with the position of the source in the sky, but it is the inclination angle with respect to
the line connecting detector and source.

Due to the whitening process, the gravitational wave strain does not have the correct order of mag-
nitude. An attempt is done to estimate the effective distance the binary system should have according
to these data, which can be seen in Appendix C. The estimation of the correct amplification factor (and
thus the correct order of magnitude of the gravitational wave signal) is a bit difficult, and goes beyond the
scope of this thesis. This gives that the value obtained for the effective distance is not a realistic value for
this binary system. Nevertheless, it was useful to attempt the estimation of the effective distance in order
to learn how to process gravitational wave data from the signal even more. It was also educational to
study a way of obtaining this amplification factor. But, this means for this thesis that it is only relevant
to check the −1/4 behaviour of the gravitational wave strain as function of the time in Equation 2.12.
This will be elaborated on in chapter 6.
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Chapter 3

Derivation of alternative models

3.1 Binary system with time dependent mass
This alternative model is a model that probes beyond the Theory of General Relativity: the mass is
changing, which is not likely to happen within General Relativity. This model is used to test whether
such time dependent masses could be fitted through the data of the event GW150914. The fit function
for the inspiraling binary with time dependent mass consists of a very important concept: The mass is
assumed to change linearly in time. This can be expressed as follows:

M =M0 + Ṁ0 · (t− t0) (3.1)

Of course, more higher order terms can be taken into account, such as second or third order derivatives.
These higher order terms are less constrained, such that expanding up to the first order is appropriate
for this thesis.

Due to the fact that the mass is assumed to change only linearly, this means that a first order Tay-
lor expansion of the Chirp mass to the power 5/3 is required. A first order is sufficient due to the
infinitesimal condition. Taylor expanding the chirp mass to the power 5/3 around t0 gives:

M5/3 = (M0)5/3 +
5

3
· Ṁ0 · M2/3

0 · (t− t0) (3.2)

With these tools, the relation in Equation 2.11 now becomes:

f
−8/3
GW =− (8π)8/3

5
·
(
G

c3

)5/3

·
[
M5/3

0 +
5

3
· Ṁ0 · M2/3

0 · (t− t0)

]
· (t− t0)

=
(8π)8/3

5
·
(
G

c3

)5/3

·
[
−5

3
· Ṁ0 · M2/3

0 · (t− t0)2 −M5/3
0 · (t− t0)

]
.

(3.3)

To avoid calculations and results with large numbers, the masses are expressed in solar massesM� instead
of ’kilograms’.

3.2 Rotating rigid spirally shaped mass distribution
The previous crazy model is an extension of the original model, which gives that the fit function for
this model can be derived really easily. The model described in this section is a total newly introduced
model, which has nothing to do with the original model. The derivation of the equation that describes the
frequency as function of time is therefore a bit longer than the derivation for the previous crazy model.

3.2.1 Form of the mass distribution
Assume a mass distribution that has been formed in a spiral shape, which has a total mass M being
constant in time. See Figure 3.1. The spiral has formula:

r(φ) = αφ with φ ∈ [0, 2π]. (3.4)
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The parameter α contains information about the size of the spiral. Because we know that the distribution
is shaped like a spiral, the size of the spiral should be larger than its Schwarzschild radius. It is a bit strange
to mention a ‘Schwarzschild radius’ for an object that is not a sphere, but this radius is the boundary
that becomes an event horizon if all of its total mass is contained within a sphere of that radius. Here it
is assumed that the size of the spiral distribution is larger than or equal to the Schwarzschild radius that
appears if the total mass was collected in a spherical distribution with that radius, i.e.

r0 = r(φ = 2π)− r(φ = 0) = α · 2π ≥ 2MG

c2
⇒ α ≥ MG

πc2
. (3.5)

For this thesis, it is sufficient to work out the spiral model for only one value of α. For convenience, the
minimal value is chosen as value for α: α = MG/(πc2).

Assumed is also that the mass density is constant in space and time. It is a one dimensional distribution,
denoted with λ, such that dm = λdl holds, where dm represents an infinitesimal mass part. The total
mass expressed in terms of the mass density can be calculated by integrating over all pieces dm as:

M =

∫
dm =

∫ l

0

λdl = λα

∫ 2π

0

√
1 + φ2dφ︸ ︷︷ ︸
≡Φ

= λ · l = Φλα, (3.6)

with l the length of the spiral, calculated via the integral above in the system co-rotating with the spiral
as:

l =

∫ 2π

0

α ·
√

1 + φ2dφ. (3.7)

Because the shape of the spiral is assumed to be constant and because the limits of the spiral (the limits
in the integral) are assumed to stay constant in time, the following integral is a constant integral denoted
with Φ. It is very useful to express results in this constant:

Φ =

∫ 2π

0

√
1 + φ2dφ ≈ 21.2563. (3.8)

This means that the following relation between l and Φ is obtained, because α is a constant: l = αΦ.

What is important here is that ω is only a slowly varying function in time. This means that it can
be assumed to be constant on timescales T in the order of the period of one rotation, but is changing on
timescales τ � T . These are timescales of many rotations. This is an assumption that is also used in the
derivation of the original model.

Because the spiral is emitting gravitational waves and the body is rigid, the bodies energy should de-
crease when emitting waves, which means it slows down such that the emitted frequency drops as time
moves forward. But this contradicts the behaviour of the data; from the data we can conclude that the
frequency rises as time increases. This means that the mass needs to be negative in order to create a
system that behaves like the fashion of the data. Although this model is astrophysically very unlikely,
it could be a step towards describing negative mass distributions. But it could be possible that within
the uncertainty, a positive mass is possible. This contradiction on forehand is useful to be taken into
account, but the results will determine to what extend this model will be ruled out or not.

3.2.2 Inertia and quadrupole moment tensor in restframe
The inertia tensor is calculated in the frame co-rotating with the mass distribution to be:

I = λα3

J R 0
R P − J 0
0 0 P

 , (3.9)
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with

J =

∫ 2π

0

φ2 sin2(φ)
√

1 + φ2dφ ≈ 184.80 (3.10a)

R =

∫ 2π

0

φ2 sin(2φ)
√

1 + φ2dφ ≈ 120.93 (3.10b)

P =

∫ 2π

0

φ2
√

1 + φ2dφ ≈ 399.22 (3.10c)

These integrals appear when the inertia tensor is calculated via its definition in Appendix B.2. All of
these three functions are constants in space and time in the rest frame of the spiral (co-rotating frame).
The only things that can change is the angular velocity ω.

A coordinate transformation is needed to calculate it for this spiral shaped mass distribution, but this is
very straight forward: a transformation is done to a coordinate system that has the z-axis aligned with
the source frame, and the x-axis tangent to each point of the spiral and the y-axis perpendicular to the
tangent line at each point and perpendicular to the z-axis. See Figure 3.1 for clarification.

Figure 3.1: Geometry of the rigid spiral with a coordinate system introduced at each point of the spiral to
simplify the calculation of the inertia tensor and the total length of the spiral. The green circle represents
the z-axis pointing out of the paper in both the stationary (located at the origin of the given coordinate
system) as well as in the coordinate systems along the spiral. The spiral is assumed to be rotating around
the green dot located at the origin.

3.2.3 Inertia and quadrupole moment tensor in the (constant) source frame
The inertia tensor takes the following form in the source frame:

IS =
λα3

2
·

P 0 0
0 P 0
0 0 2P

+

2J − P 2R 0
2R −(2J − P ) 0
0 0 0

 · cos(2ωt) +

 −2R (2J − P ) 0
(2J − P ) 2R 0

0 0 0

 · sin(2ωt)

 .
(3.11)

The quadrupole moment tensor is then calculated in the source frame with the help of the relation given
in Appendix B.2 as:

Q =
λα3

2
·

P
3 0 0
0 P

3 0
0 0 − 2P

3

−
2J − P 2R 0

2R −(2J − P ) 0
0 0 0

 · cos(2ωt)−

 −2R (2J − P ) 0
(2J − P ) 2R 0

0 0 0

 · sin(2ωt)

 .
(3.12)

The time derivative of this tensor is now calculated. This can be done in this step of the calculation
because the frame of the wave is not moving with respect to the stationary system in which the spiral is
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rotating, as is explained before. After this time derivative, the tensor is taken to the wave frame. The
form the tensor takes in Traceless gauge in the wave frame is:

Q̈ =− 4λα3ω2 ·


(

1+cos2(i)
2

)
(2J − P ) 2R cos(i) 0

2R cos(i) −
(

1+cos2(i)
2

)
(2J − P ) 0

0 0 0

 · cos(2ω(t− r/c))

+ 4λα3ω2 ·


2R
(

1+cos2(i)
2

)
−(2J − P ) cos(i) 0

−(2J − P ) cos(i) −2R
(

1+cos2(i)
2

)
0

0 0 0

 · sin(2ω(t− r/c)),

(3.13)

such that the metric perturbation hij can be calculated via the quadrupole moment formula in Equation
1.7. It turns out that the quadrupole moment tensor is already transverse (and traceless by definition)!
This means that the quadrupole moment tensor is already in transverse traceless gauge, which means
also that automatically hij is in transverse traceless gauge. The polarization amplitudes h+ and h× are
then calculated via Equation 1.5. This gives for these amplitudes:

h+ =− 4Gλα3ω2

c4r
·
[

1 + cos2(i)

2

]
· [(2J − P ) cos(2ω(t− r/c)) + 2R sin(2ω(t− r/c))] (3.14a)

h× =− 4Gλα3ω2

c4r
· cos(i) · [2R cos(2ω(t− r/c))− (2J − P ) sin(2ω(t− r/c))] (3.14b)

3.2.4 Energy loss due to gravitational wave emission
With the help of Equation 1.17, the following relation for the energy carried away by a gravitational wave
is obtained:

dEGW

dt
=

r2c3

32πG

∫ 〈
ḣTTij ḣ

ij
TT

〉
T

dΩ =
r2c3

16πG

∫ π

0

∫ 2π

0

〈
ḣ2

+ + ḣ2
×

〉
T

sin(θ)dφdθ, (3.15)

where 〈...〉T denote time averaging over one rotation period T . For this purpose, it means that terms
containing the product of a sine and cosine average to 0, whereas terms containing the square of a cosine
or sine average to 1/2. This means that the integrand takes the form:〈

ḣ2
+ + ḣ2

×

〉
T

=

(
8Gλα3ω3

c4r

)2 [
(1 + cos2(θ))2

4

[
(2J − P )2 + (2R)2

]
+ cos2(θ)

[
(2R)2 + (2J − P )2

]]
=

(
4Gλα3ω3

c4r

)2 [
(2J − P )2 + (2R)2

](1

4
+

3

2
cos2(θ) +

1

4
cos4(θ)

)
,

(3.16)

such that the total energy loss per unit of time equals:

dEGW

dt
=

r2c3

16πG
·
(

4Gλα3ω3

c4r

)2 [
(2J − P )2 + (2R)2

]
· 16π

5
=

16M2Gα4ω6

5Φ2c5
· S, (3.17)

where S ≡
[
(2J − P )2 + (2R)2

]
= 5.9372 · 104 is a dimensionless constant.

3.2.5 Kinetic energy of the rotating spiral
Because the source frame as well as the wave frame are non moving, the kinetic energy of this spiral
does not depend on the frame in which it is calculated (wave or source frame). The kinetic energy of the
rotating spiral is easily calculated in the frame of the source:

Ek =
1

2
I33ω

2 =
λα3

2
Pω2 =

Mα2

2Φ
Pω2 (3.18)

The change of kinetic energy per unit time is calculated to be:

dEk
dt

=
Mα2

Φ
· P · ω · ω̇ (3.19)
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3.2.6 Potential energy of the rotating spiral
The potential energy of the spiral is calculated using the assumption that the mass only feels the potential
energy along the line of the spiral, such that the potential energy for a mass at angle φ1 and distance
the origin r1 = αφ1 does not feel for example the gravitational force from a mass at angle φ1 + π and
distance to the origin r2 = αφ1 + 2πα (opposite masses). This assumption is justified by the fact that
the distance (r2− r1) is large, because α is large enough (α equals the Schwarzschild radius). This means
that the spiral can be "unrolled", which means that it can be seen as a straight line. The calculation
procedure is as follows:

1. The line will be build up like a string of beads, where each bead is a bit of mass. This bit of mass
is dm = λdl.

2. This bit of mass needs to be stringed along the line. This means that it needs to be guided along
the potential energy of the mass already present. This mass is given by: M(s) =

∫ s
0
λds′ = λs,

with s the length of the string with the mass until then.

3. The energy stored in this system is therefore minus the energy that need to be overcome. This is
the energy a person uses to push this bead along the wire; dWperson = −dWgrav.

4. The energy needed to push the bead dm from ∞ to a distance s from the origin, with the potential
energy of the mass already present is given by: dWgrav = GM(s)dm

s .

The total potential energy stored in the system is calculated to be:

Ep = Wperson =

∫
dWsystem = −G

∫ l

0

λs · λdl

s
= −Gλ2

∫ l

0

dl = −Gλ2l, (3.20)

with again l = αΦ. It is better to express the potential energy in terms of the total mass M and the
constant integral Φ:

Ep =
GM2

Φ
· 1

α
=
GM2

l
(3.21)

The change of the potential per unit time is calculated to be 0, because it does not depend on ω, which
is the only parameter that changes in time.

3.2.7 Energy balance; obtaining the frequency as function of time
The total change in mechanical energy per unit of time equals minus the energy per unit time that the
gravitational waves take away. There is a minus sign here, because gravitational waves take away energy,
whereas it is compared to the gain in mechanical energy. The change in mechanical energy per unit time
is calculated to be:

dEmech

dt
=

dEk
dt

+
dEp
dt

=
Mα2

Φ
· P · ω · ω̇ (3.22)

Equating this to minus the energy per unit time of the gravitational waves gives:

16M2Gα4ω6

5Φ2c5
· S = −MPα2

Φ
· ω · ω̇ (3.23)

Simplifying the result gives:

ω̇

ω5
= −16MGα2S

5PΦc5
= − 16

5π2c3
· S

Φ · P
·
(
MG

c2

)3

= −C0 ·
(
MG

c2

)3

, (3.24)

where C0 ≡ 16S/
(
5π2 · c3 · Φ · P

)
. In the one but last step the minimal value of α that it chosen to

work with is substituted. It is chosen to work with the mass in solar masses, because this gives smaller
numbers compared to ‘kilograms’. With the mass given in kilograms here, Equation 3.24 takes the form:

ω̇

ω5
= −C0 ·

(
MG

c2

)3

. (3.25)
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This Equation has multiple solutions, but the only physical solution (real and positive) equals:

ω(t) =
1√
2
·
[
−C1 + C0 ·M ′3 · (t− t0)

]−1/4 (3.26)

with C1 an integration constant, to be determined by the boundary condition ω0 = ω(t = t0). It turns
out that this C1 = −1/(4ω4

0). From the gravitational wave signal, it can be seen from the data that the
period shrinks to 0 if the signal gets closer to t0, such that the frequency becomes infinite as the time t
approaches t0. This means that ω0 →∞ such that C1 = 0. The gravitational wave angular frequency is
exactly twice the rotational angular frequency, as can be concluded from the derived Equation 3.14. One
obtains the following linear relation in time:

f−4
GW =(2 · 2πω(t))−4 =

1

64π4
· C0 ·

(
MG

c2

)3

· (t− t0) (3.27)

The integration constant is chosen to be t0, in the same fashion as is done for the original model. For a
mass distribution that is slowing down, this integration constant cannot be named the coalescence time,
since nothing coalesces. This offset time can be interpreted as the time at which the spiral stops rotating.
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Chapter 4

Processing Gravitational Wave Data

4.1 The used gravitational wave data sets

4.1.1 Data set from Livingston and Hanford
From the detector in Livingston and from that in Hanford, the obtained data sets are very similar. Both
sets consist of 4096 samples per second (i.e. the sampling frequency fs = 4096Hz), and the length of the
measured window is 32s for both detectors. The signals obtained at Livingston and Handford are plotted
in Figure 4.1 a and b respectively:

(a) Livingston (b) Hanford

Figure 4.1: Original signal obtained at the LIGO detectors

Both signals are built up in the sense that the inspiraling phase lies around t ≈ 0, such that the entry
that lies closest to t = 0 is found by Python. Around that entry the signal is plotted to find what range of
entries is appropriate. Because both detectors are located at a different position on Earth, there could be
a time difference between both signals. But this time difference needs to be small, because the distance
is relatively small and the speed of light is very large. See Figure 4.2.

25



Figure 4.2: The detector in Livingston (Red) and Hanford (Blue) are located at different positions on
Earth. The wave may be propagating with an angle with respect to the line connecting both detectors
(See Ref. [3]).

The maximum time difference (i.e. when the wave propagates in the direction of the line connecting the
detectors) is around 10ms. From this it can be concluded that the excitement still happens around t ≈ 0
with such a small time difference. The range in which the signal is present is determined by plotting
several ranges around the point where t = 0, as is explained. Eventually, the obtained plot for both
detectors takes the form as in Figure 4.3 below:

(a) Livingston (b) Hanford

Figure 4.3: Whitened signal obtained for the LIGO detectors. The black dots are the zero crossings used
to estimate the period of the signal at certain time stamps.

4.2 Whitening the signal

4.2.1 Determining the Amplitude Spectral Density
With the help of the option ‘ASD’ in Python (which stands for ‘amplitude spectral density’), an amplitude
spectral density (ASD) can be made. An amplitude spectral density is in fact the root of the power
spectral density (PSD). A PSD describes the distribution of power into frequency components present
in the signal. One can determine ‘how much’ a certain frequency is present in a signal. The sample
frequency fs is of course equal to the reciprocal of the time difference between 2 successive data points
(fs = 4096Hz. This is due to the fact that the signal is already sampled, such that the time stamps where
the data points are located are already chosen when this signal was sampled. Together with Python, an
amplitude spectral density (ASD) is made from the PSD. This is done for the data measured by the
detector in Hanford, as well as for the data obtained by the detector in Livingston. See Figure 4.4
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Figure 4.4: Amplitude Spectral Density for the signals obtained from the detectors at Livingston (Green)
and Hanford (Red). With the black line a smooth model is plotted for the data obtained from the detector
in Hanford.

4.2.2 The whitening process
Whitening a signal is a relatively easy operation. What is basically done when whitening a signal is: first
transform the signal to the frequency domain by a fast Fourier transform, multiply the data set given
in random variables with a so called ‘whitening matrix’ to obtain a data set in new variables that has a
diagonal covariance matrix (i.e. the variables are uncorrelated), and then transform it back to the time
domain. What is obtained then, is a signal which has an amplified amplitude. For the frequency this
is no problem, because the frequency is estimated by looking at successive zero crossings of the signal,
which are unaltered. This will be elaborated on in Section 4.3. For calculations where the real amplitude
is needed for, this amplification factor needs to be taken into account. This will be discussed broadly in
Section 4.4.2.

4.3 Frequency estimation

4.3.1 Combining both data sets from Livingston and Hanford in one fre-
quency plot

To combine the data from Hanford and Livingston, the time axis of both signals need to be aligned. In
Ref. [1], the signals are aligned as much as possible. In this article, the researchers inverted one of the
signals and shifted this one by 6.9ms. In this case, the overlap of both signals is maximal. This needs to
be done, because now both frequency estimates align on the time scale. If the signals were not aligned,
one would obtain 2 different data sets that cannot be combined; the time shift would then be present in
the frequency estimation plot. The overlap of the signals is only used to determine the time shift, and
not for determining the frequency. This time shift is then used to shift the signal from the detector in
Livingston by 0.0069s. Both signals are then used separately to estimate the frequency at certain time
stamps. In the end, the frequency plots of both signals are combined into one frequency plot. See Figure
4.5 how the maximal overlap looks like.
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Figure 4.5: The signals from the detector in Livingston and Hanford plotted in one figure, where the
signal obtained from the detector in Livingston is time shifted in such a way that it creates maximum
alignment (i.e. overlap) with the signal obtained with the detector in Hanford.

The frequencies are determined by successive zero crossings of the yellow curve and the blue curve
separately in Figure 4.5. As can be seen from the figure above, both gravitational wave signals agree
with each other about the frequency increase in time; the zero-crossings of both signals are almost the
same and have the same successive tendency (i.e. have roughly the same increase rate). The combined
frequency-time plot takes the form as in Figure 4.6:

Figure 4.6: Frequency estimation for the signal during the inspiraling phase, where both the signal
measured in Livingston as well as the signal measured in Hanford is taken into account.

Points with a too large uncertainty and points that lie within the ring-down phase are left out. The points
that are assumed to satisfy both conditions lie in between t = −0.027 and t = −0.011 (i.e. the range in
Figure 4.6 above). The uncertainty becomes to large for points at t < −0.027, because the amplitude has
roughly the same value as the noise. Therefore, at these time stamps the signal is hardly distinguishable
from the noise. As time evolves (and thus the amplitude increases), the signal becomes more and more
distinguishable from the noise, until it eventually disappears. The signal dies out as the system comes in
the so called ’ringdown-phase’, where the mass distribution evolves to a sphere such that the quadrupole
moment becomes 0. The models that are derived only hold in the inspiral phase, such that only points
estimating the frequency that lie in the time range of the inspiraling phase are taken into account. This
means that points for t > −0.011 are left out. For both signals, only five points are selected to which
data is fitted. In total, there are ten points to estimate the frequency as a function of time with. The
points that are taken into account are plotted in Figure 4.6.
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4.3.2 Obtaining the frequency as function of time in GW data set
In a gravitational wave signal, the frequency is in general time dependent. It is determined by looking
at the time difference between successive zero crossings of the signal. Because the signal is built up as
a sinusoid curve (with decreasing period), the period of the signal can be estimated by successive zero
crossings of the signal. The time of zero crossing i is denoted with Zi This time difference is assumed to
represent half of the period of the signal at time τi, where τi is chosen to be exactly in the middle of the
successive zero crossings i and i+ 1. Here i is an index for the zero crossings. The frequency fi at time
τi are therefore estimated as:

τi =
Zi + Zi+1

2
(4.1a)

fi =
1

2 · (Zi+1 − Zi)
, (4.1b)

During the rest of the thesis, i will run from 1 up to the number of zero crossings taken into account for
a signal.

4.4 Amplitude estimation

4.4.1 Finding the maxima of a signal
One has now the whitened (and amplified) signal. If one wants to look at the evolution of the amplitude
of a signal, the values of the extreme values are very useful. From this, one can determine how the
amplitude behaves as a function of time, because for a signal, the amplitude is defined as the maximal
deviation from the equilibrium position. The signal has positive and negative deviation (because it is
oscillating). In order to take both the maxima and the minima into account, the absolute value of the
signal is taken, and with help of Python, all the maxima are found (the minima are turned into maxima
when taking the absolute value). The result is shown in Figure 4.7 below for both the detector located
at Hanford as well as for the detector at Livingston.

(a) label 1 (b) label 2

Figure 4.7: 2 Figures side by side

4.4.2 Determining the correct value of the amplitude as function of time
In order to determine the real values of the amplitude, another normalization factor needs to be used.
But not the whole signal is multiplied with this normalization factor, because we have now found the
times at which the amplitude has a maximum value and the value of that whitened amplitude. We also
have determined the frequency estimation at approximately these time stamps. This is due to the fact
that an extreme value of an oscillating signal is halfway in between two successive zero crossings, and the
frequency estimations are also assumed to be at times half way in between two successive zero crossings.
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Of course, it is possible that the time stamps of the maxima are not exactly equal tot he time stamps
of the frequency estimations. But in order to find the amplification factor, the value of the frequency
is needed (because the amplification factor is taken from the ASD). The difference between these time
stamps is therefore neglected (because this difference is very small). At the time stamp of each maximum,
the frequency is estimated. At these values of the frequencies, the values of the ASD are obtained. These
values are averaged, from which the result is the estimation of the amplification factor. The correct value
of the amplitude is plotted against the time for both the detectors located at Livingston and Hanford in
Figure 4.8 below. Here only the value of the peaks are shown.

(a) label 1 (b) label 2

Figure 4.8: 2 Figures side by side

Because this method is a bit inaccurate due to the fact that the ‘undo-procedure’ is not exactly the
reverse operation of the whitening process, the (effective) distance estimated with this method is also
inaccurate, and may be incorrect. Due to this fact, the power law between the gravitational wave strain
and the time in Equation 2.12 is estimated for both the signal obtained in Hanford as well as for the
signal obtained in Livingston. The amplification factor of the gravitational wave signal may be incorrect,
but this only causes a different prefactor in Equation 2.12. The same 1/4 power law remains, such that
this can be determined very accurately.

4.5 Extracting uncertainties

4.5.1 Uncertainties in the data points
Of course are the obtained values for the frequencies not precisely correct, but they have uncertainties.
A zero crossing could be a bit more to the left or to the right. In order to take this into account, it is
assumed that a zero crossing could be at most lie at the location of the points where the signal takes half
the value of the nearest absolute maximum (to the left or to the right). The time ti where the signal has
a local maximum is denoted with Mi. These maxima both contain maxima and minima in the signal,
but they are in the figure all maxima due to the absolute value. The point in time where the signal takes
half the value of its maximum is denoted with Hi. There are twice as much half-maxima than maxima,
as is clear. This means that zero crossing Zi can be at most located to the right at the time where the
signal takes half of the value of the nearest absolute maximum to the right (at H2i), and can be at most
located to the left at the time where the signal takes half of the value of the nearest absolute maximum
to the left (at H2i−1). This means that zero crossing Z3 is located in between half-maximum H5 and H6.
See Figure 4.9 for clarification.
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Figure 4.9: Uncertainty estimation of the zero crossings. Here the different points used in the derivation
are indicated below with an orange arrow. A black dot (zero crossing) could have a value in between the
previous and following green dot (half maxima).

The signal is well organized, in the sense that zero crossing Zi is wedged in between absolute extreme
value Mi−1 and absolute extreme value Mi, as can also be seen in Figure 4.9. For the data coming from
the detector at Hanford the exact same thing is done. This signal is also well organized in the same sense.
As is already said, points that satisfy −0.030 < t < −0.012 are taken into account.

4.5.2 Uncertainties in the period of the signal
The maximal and minimal values of a zero crossing point Zi is now clear, but the maximal and minimal
value of the period of the signal need to be calculated in order to determine the uncertainty in the
frequency. The maximal value of the period is calculated using the maximal time difference between 2
successive zero crossings, i.e. the minimum (i.e. left most) value of zero crossing i (at H2i−1) and the
maximum (i.e. right most) value of zero crossing i+ 1 (at H2(i+1) = H2i+2):

Tmax
i = Zmax

i+1 − Zmin
i = H2i+2 −H2i−1, (4.2)

where Zmax
i is the value most to the right that zero crossing i could have. The minimal value (value most

to the left) of period i is determined in the same way by calculating the minimal time difference between
successive zero crossings:

Tmin
i = Zmin

i+1 − Zmax
i = H2i+1 −H2i. (4.3)

We have now that:
Tmin
i ≤ TTi ≤ Tmax

i . (4.4)

The true value TTi of the period is in between these boundaries, with 68% confidence, such that the
uncertainty is estimated as follows: The uncertainty from above is estimated by the difference between
the maximum value ≤ Tmax

i and the calculated value Ti, whereas the uncertainty from below is estimated
by the difference between the calculated value Ti and the minimum value Tmin

i . In the end, the uncertainty
is estimated as the mean of the uncertainty from above and below:

σ+
i ≡ T

max
i − Ti (4.5a)

σ−i ≡ Ti − T
min
i (4.5b)

σTi ≡
σ+
i + σ−i

2
=
Tmax
i − Tmin

i

2
(4.5c)
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4.5.3 Uncertainty in the frequency
The uncertainty in a period is calculated above. The uncertainty in frequency fi at time τi is calculate
via Equation A.6 in Appendix A.2 to be:

σfi = f2
i · σTi . (4.6)

The frequency as function of time, including uncertainties at all the data points is visualized in Figure
4.10 below:

Figure 4.10: Frequency estimation plotted against time. The red bars denote the error bars at each data
point. These are determined using the steps described in the previous section.

4.5.4 Uncertainties in the amplitude of the signal
In order to estimate the uncertainty in the value of the amplitude of the signal, it is assumed that the
real value is deviated at most 10% from the estimated value, i.e. 10% above and 10% below the estimated
value. The error bar is therefore dependent on the value of the amplitude. See Figure 4.11 below:

(a) Livingston (b) Hanford

Figure 4.11: Corrected strain h(t) plotted against the time t. The red bars denote the error bar at each
data point, which is assumed to reach to 0.9 times its value below, and 1.1 times its value above.
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Chapter 5

Bayesian Statistics: Probability Density
Function for fit parameters

5.1 Finding the best fit: least squares

5.1.1 Bayes’ rule
In this thesis, linear and quadratic fit functions are used to fit through data points. To determine the
most optimal parameters, the square of the distance between the fit function and the data points needs
to be minimized (for certain values of the fit parameters). This is called the principle of least squares.
For notational simplicity, the data points are collected into the vector D, and the model parameters
are collected into the vector X (not necessarily of the same size). There is also background information
present, because this is indispensable in an experiment. In processing these data, the use of Bayes’ rule
comes in handy. Bayes’ rule tells us that the posterior probability density function for the parameters
Xi given data Di can be written as a product of a prior and a likelihood function in the following fashion
(Ref. [8]):

p(X|D, I)︸ ︷︷ ︸
posterior

∝ p(D|X, I)︸ ︷︷ ︸
likelihood

× p(X|I)︸ ︷︷ ︸
prior

. (5.1)

In any case, the prior and likelihood function are probability densities on their own, such that in principle
they should be normalized separately. But because they are multiplied with each other to form the
posterior probability density function, both the prior and likelihood function do not necessarily need to
be normalized (but normalizing them separately is of course much properer). The overall proportionality
constant can be determined by normalizing the posterior probability density function. When one wants
to know a real probability, one needs to determine this factor. If one only wants to see the behaviour of
the posterior, this factor can be omitted.

5.1.2 Prior
A prior is a probability density function for the theory parameters X given the background information
I. This probability density function is based on prior knowlegde about the parameters; it is a choice, a
decision about what possible values one could obtain for the unknown parameters. A prior is chosen to
be nonzero within a certain range of a parameter and zero outside of that range. It is much more elegant
to normalize the prior, such that a uniform prior takes a value that is the recripocal of the range. For
calculational convenience, the uniform prior is chosen to have a value of 1 within the range. The overall
normalization factor can be absorbed in the overall normalization constant of the posterior. Mostly, a
prior is taken to be uniform (if each value is equally likely). Another common choice for a prior is a
Gaussian prior, for a parameter that has a very large probability to have a certain value and very small
probability that the value deviates much from this value. In Figure 5.1 below, one finds 2 examples of
priors for a parameter ‘A’.
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(a) Uniform prior (b) Gaussian prior

Figure 5.1: Two different priors for a parameter ‘A’ that could be used.

In this thesis, the model parameters, such as the mass or the coalescence time, are not the same as
the fit parameters, due to the fact that Python is not able to work with the large numbers of the
model parameters. The choice is made to use fit functions in an as easy form as possible. There is no
prior knowlegde present about the fit parameters, but there is only information present about the model
parameters, which are related to the fit parameters. A conversion from prior of the model parameters to
the prior of the fit parameters is done by a coordinate transformation described in Appendix A.1. Due
to this, the prior of the fit parameters will no longer be ’just’ a constant, but will be a function of the fit
parameters f(X). The boundaries also change, such that the relation between model and fit parameter
needs to be used to determine the boundaries for the prior for the fit parameters (from the boundaries
of the model parameters). This means that the prior takes the form as in Equation 5.2 below:

p(X|I) =

{
f(X) Xmin ≤ X ≤ Xmax

0 else,
⇒ log p(X|I) =

{
log(f(X)) Xmin ≤ X ≤ Xmax

−∞ else,
(5.2)

where the minimal and maximal values depend on the most probable value of the parameter in the used
model.

But, the least square method is valid as long as the prior for the variables for which the least squares
are calculated is assumed to be constant. Previously, it can be seen that a constant prior is used for the
model parameters, from which a parameter dependent prior is found for the fit parameters. But here
it is done the other way around: First a constant prior for the fit parameters is used to determine the
most likely values for the fit parameters using the least χ2 fit method. This fit parameter prior is trans-
formed to a model parameter prior (with the inverse transformation), to see how the prior for the model
parameters would behave if the prior for the fit parameters needs to be constant. Then the posterior and
marginal probability density function with constant fit parameter prior are determined (such that the
distributions for the most likely χ2-values can be seen). As a last step, the non uniform prior for the fit
parameter (determined from the constant prior for the model parameters) is determined, to see how the
posterior and marginal probability density functions look like when this prior is used. The uniform prior
for the fit parameters is then, with an inverse coordinate transformation, transformed into the prior for
the model parameters. This is done in order to check what the prior for the model parameters would be,
in order to obtain a uniform prior for the fit parameters. From this, a conclusion can be drawn about the
prior for both the fit and model parameters. This can be done, because a prior is a guess based on prior
knowledge, but it is a choice that is made by the data analyst: the prior is in fact an arbitrary choice.
Anyway, the uniform prior and logarithm of it for the fit parameters take the form:

p(X, I) =

{
N if Xmin ≤ X ≤ Xmax

0 else.
(5.3)

The constant factor of the prior N can be chosen to be 1, because it easily becomes 0 when taking the
logarithm. It could be any other constant of course, but this constant can be absorbed into the overall
proportionality constant in the posterior probability density function. The normalization constant N
(and also this same symbol) is used in the result part of this thesis for different priors, but it can have a
different value for each different prior. For each normalization constant, the same symbol N is therefore
used multiple times.
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5.1.3 Likelihood function
The likelihood function is the probability density function for the data points given that the parameters
are true. To derive a probability density function for the data points, one starts with the noise. Assumed
is that the noise behaves Gaussian, which means that it has a mean value of 0 and a standard deviation
of σi, where i runs from 1 up to the number of data points. The probability density function for the noise
(i.e. the probability density function to obtain a certain value for the noise) is therefore easily found to
be:

p(ni|I) ∝ 1

σi
exp

(
− n2

i

2σ2
i

)
(5.4)

The noise at each data point is furthermore assumed to be independent of the noise at the other ones,
such that the probability density for the whole noise set (i.e. at all data points together) can be written
as:

p({ni}|I) =

N∏
i=1

p(ni) ∝
N∏
i=1

(
1

σi
· exp

[
− n2

i

2σ2
i

])
. (5.5)

From this, the likelihood for the data can be found. The difference between the value of a data point and
the value that is predicted by the model is assumed to be caused only by the noise, i.e. ni = Di−yi, where
Di represents data point i and yi represents the predicted value of data point i. It is worth mentioning
that the standard deviation of the data points is equal to the standard deviation of the noise, because
only the noise is causing a deviation from the predicted model. Using that the noise is equal to the
difference of the measured value and the value the model predicts, the likelihood function for the data
points is found to be:

p(D|X, I) ∝

[
N∏
i=1

(
1

σi

)]
· exp

[
N∑
i=1

−1

2
·
(
Di − yi
σi

)2
]

(5.6)

It is better to work with the logarithm of the likelihood, which is calculated as:

log p(D|X, I) ≡ log(p({ni}|X, I)) ∝ −1

2

N∑
i=1

[
log
(
σ2
i

)
+

(
Di − yi
σi

)2
]
. (5.7)

5.1.4 (Log)posterior
According to the rule of Bayes, the posterior is obtained by multiplying the prior with the likelihood
function. From the calculation rules of logarithms, it can be concluded that the logarithm of the posterior
can be obtained by summing the logarithm of the prior and the logarithm of the likelihood function:

log p(X|D, I) ∝ log p(X|I) + log p(D|X, I)

∝

− 1
2

∑N
i=1

[
log
(
σ2
i

)
+
(
Di−yi
σi

)2
]

if Xmin ≤ X ≤ Xmax

−∞ if else

(5.8)

The total posterior can be found by exponentiating the logposterior:

p(X|D, I) ∝

[
N∏
i=1

1

σi

]
· exp

[
−1

2
χ2

]
, (5.9)

with

χ2 ≡
N∑
i=1

(
Di − yi
σi

)2

(5.10)

There are certain values of the parameters that give a maximum in the likelihood function (which are
the values that are thus most likely to be the true values of the parameters). This maximum of the
posterior should be shaped like a peak, such that this peak contains the most probable values of the
parameters. This corresponds in this case by minimizing the value of χ2, which is called the residual sum
of squares. With the values of the parameters that minimize the χ2, a fit function can be plotted through
the data. This method is therefore called the least squares method, such that the residual sum of squares
is minimized.
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5.1.5 Uncertainties in least squares fit
Of course the values of the fit parameters that maximize the likelihood function have a certain uncertainty.
This uncertainty is linked to the width of the posterior function. For this, the Hessian is used, which is
a second order derivative matrix defined as:

Hij ≡
∂2
(
χ2
)

∂Xi∂Xj
. (5.11)

The covariance matrix is then related to the inverse of the Hessian (see Ref. [8]):

σ2
ij = 2

[
H−1

]
ij
, (5.12)

where i and j are the indeces of the fit parameters. This means that both of them run from 1 up to
the amount of fit parameters used in the model. The uncertainties in the fit parameters are given by
the square root of the diagonal elements of the covariance matrix given in Equation 5.12. Due to the
definition of this theory, the square root of the i-th diagonal element of the covariance matrix in Equation
5.12 corresponds to the uncertainty in the i-th fit parameter (i.e. the i-th entry of the vector X).

5.1.6 Marginal probability density
It is also important to determine the marginal probability densities, i.e. the probability density of
one variable irrespective of the outcome of the others. This so called marginal probability density is
obtained by integrating out the other variables and keep the variable for which the marginal probability
is determined Xi as a variable:

p(Xi|D, I) ∝
∫ ∞
−∞
· · ·
∫ ∞
−∞

p(X1, ..., XN |D, I)dN−1Xj 6=i. (5.13)

This is a one dimensional probability density function, in the sense that the other variables have been
marginalized out; an integral is taken over all possible values, such that all these possible values of the
parameters are taken into account. All that is left then is a marginal probability density function for one
variable that is not integrated out. The infinitesimal in the integral (dN−1Xj 6=i) represents an (N − 1)-
dimensional volume element, not containing the variable for which the marginal probability density is
determined.
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Part II

Results

37



Chapter 6

Results for the original model: Binary

The theoretical derivation of this binary model is done in Chapter 2, such that this model of the frequency
as function of time can be fitted to the obtained data from the event GW150914. Fitting the original
model to the data gives better insights in the way gravitational wave data are processed, because the
same simplified method is used as is used in Ref. [1]. The frequency dependence is derived, from which
an estimation of the chirp mass and the coalescence time are determined. These are compared to the
values obtained in Ref. [1], such that the method of working with gravitational wave data is used once
for a model this is already done for. After this, the same method is used for the crazy models. For this
original model, also a power law estimation is done between the gravitational wave strain and the time.
The power law is derived theoretically and fitted through the data as well. This is not done by Ref. [1],
but this is an extension to the research described in this paper. From this, again the coalescence time
can be estimated, but also an attempt is done for the estimation of the effective distance between the
detector and the source for both the detectors located in Livingston and Hanford.

6.1 Determining the Mass and the coalescence time

6.1.1 Fit function
From the form of the gravitational wave in Equation 2.11, it can be seen that if the gravitational wave
frequency is raised to the power −8/3 and plotted against the time t, a linear function of the following
form is a good candidate to fit through the data:

y = −A · (x−B), (6.1)

where y corresponds to f−8/3
GW in Hz−8/3 and x corresponds to the time t in s.

6.1.2 Relating the fit parameters to the model parameters
The fit parameters A and B are related to the model parameters M and t0 as follows (by comparing
Equation 6.1 with Equation 2.11):

A =
(8π)8/3

5
·
(
G

c3

)5/3

· M5/3 (6.2a)

B =t0 (6.2b)

These relations are easily inverted to give:

M =A3/5 ·
(
c3

G

)
·
(

5

(8π)8/3

)3/5

(6.3a)

t0 =B. (6.3b)
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The determinant of the Jacobian needed for the coordinate transform is in fact one dimensional, because
B is identically t0. It is calculated to be:

det(J) =
∂M
∂A

=
3

5
·
(
c3

G

)
·
(

5

(8π)8/3

)3/5

·A−2/5. (6.4)

6.1.3 Prior for model and fit parameters
Uniform prior for model parameters; non uniform prior for fit parameters

As it is already said, the fit parameters and model parameters are in this case related non linearly, which
means that the prior for the fit parameters becomes a function of these parameters (instead of being
constant). This will be discussed further on more broadly. For the model parameters, the prior for the
chirp mass is chosen to be uniform (it has a constant value) between 0 and 100 solar masses and 0 outside
of that. This is chosen this way to have a wide range of possible realistic values, such that the most
probable value lies within this range. For the coalescence time, the prior does also have a constant value
in between −0.1 and 0.1, because from the plot it can be seen that the time at which the signal is present
(and where the coalescence time needs to be) certainly lies in between these values. Because the chirp
mass and the coalescence time are independent from one another, the combined prior is just the product
of the separate priors:

p(M, t0|I) = p(M|I) × p(t0|I) =

{
N if 0 <M≤ 100M� & − 0.1 ≤ t0 ≤ 0.1

0 else.
(6.5)

Strictly speaking, the prior above needs to be normalized, i.e. N should have the value N = [(100M� ·
0.2)]−1, such that the volume under the two dimensional prior is 1. But as is explained in Chapter 5,
this normalization constant N can be absorbed into the overall normalization constant of the posterior
(such that for convenience the prior is chosen to have value 1). With the coordinate transformation, the
prior for the fit parameters becomes:

p(A,B) = p(M, t0) · dM
dA
∝

{
A−2/5 if 0 ≤ A ≤ 3.33 & − 0.1 ≤ B ≤ 0.1

0 else.
(6.6)

Constant prior for fit parameters

With the prior in Equation 6.6, an estimate of the posterior probability density function can be made
for the fit parameters, but the most probable value is not determined using this prior (such that the
most probable value determined with the χ2 method does not correspond to the most probable value in
these posterior and marginal probability density functions). In the derivation for the least χ2 method, a
constant prior is needed, such that only the likelihood function is depending on the model parameters.
Now the same range for the model parameters is used (because the range of possible values does not
change), but the function value of the prior is taken to be constant (and A and B are assumed to be
independent):

p(A,B) =

{
N if 0 ≤ A ≤ 3.33 ∧ −0.1 ≤ B ≤ 0.1

0 else.
(6.7)

Again, this prior is normalized if N takes the uniform value N = [3.33135 · 0.2]−1. This normalization
factor is absorbed into the overall normalization constant appearing in the posterior, such that the prior
takes the value 1. With a coordinate transform between model and fit parameters, the prior for the model
parameters becomes:

p(M, t0) ∝

{
M2/3 if 0 ≤M ≤ 100M� ∧ −0.1 ≤ t0 ≤ 0.1

0 else.
(6.8)

This prior is not uniform, but it is nowhere sharply peaked and it is broad enough. Because a prior is
a choice, it is legit estimation to take a constant prior for the fit parameters. Then a uniform prior for
the fit parameters can be used, such that the posterior and marginal probability density functions belong
to the values and uncertainties of the most probable values determined with the least χ2 method. Both
priors are used in the calculations.
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6.1.4 Plot of the data and fit: uniform prior for the fit parameters
The data and uncertainties are obtained via the procedure described in Section 4.5. When the frequency
estimated from the data of both detectors combined is raised to the power −8/3 and is plotted against
the time, one obtains the following fashion with least squares fit:

Figure 6.1: Frequency estimation raised to the power −8/3 plotted against the time t for the data of the
detector in Livingston and Hanford combined. The red bars denote the error bars, whereas the blue line
is the least squares fit line.

The fit parameters that minimize the residue are obtained with Python to be:

A =(0.24± 0.02) · 10−3Hz−5/3 (6.9a)
B =(−0.0118± 0.0002)s (6.9b)

These values and uncertainties are calculated using the least χ2 approach (including the covariance
matrix) described in Chapter 5.

6.1.5 Posterior for fit parameters; uniform prior for fit parameters
The marginal and posterior probability density functions calculated with the uniform prior for the fit
parameters belong to the most likely values for the fit parameters obtained with the least χ2 method.
These probability density functions describe how the most likely values of A and B are distributed. The
prior of Equation 6.7 is used. See Figure 6.2 below.
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Figure 6.2: Likelihood function and marginal probability density functions for the fit parameters for the
frequency evolution in time. The values that maximize the likelihood function are denoted with the blue
lines, and the point where the maximum of the likelihood function is located is denoted with a blue dot.
A uniform prior for the fit parameters is used here, such that the blue lines correspond to the maximum
values in the marginal probability density functions.

6.1.6 Posterior for fit parameters; non uniform prior for fit parameters
With the recipe in Section 5.1.6, one can determine the form of the (marginal) likelihood function for
the fit parameters using the prior specified before. To determine the pdf for A and B and the marginal
pdf for both of them separately, the Python Corner package is used. With the prior of Equation 6.6, the
following posterior and marginal probability density function are found for A and B:

Figure 6.3: Likelihood function and marginal probability density functions for the fit parameters for the
frequency evolution in time. A non uniform prior for the fit parameters is used here. The values that
maximize the likelihood function are denoted with the blue lines, and the point where the maximum of
the likelihood function is located is denoted with a blue dot.

The value of A and B that minimizes the residu is denoted with a blue line in the marginal pdf and
with a blue dot in the likelihood function. Keep in mind that these values are the most probable values
obtained by maximizing the posterior probability density function when the prior in Equation 6.7 is used,
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and are not the most probable values belonging to the distributions shown in Figure 6.3.

6.1.7 The values of the model parameters
The most likely values of the model parameters are determined via the obtained relations in Equation
6.3, where the uncertainties are calculated using Appendix A.2:

M =(20.6± 1.5) ·M� (6.10a)
t0 =(−0.0103± 0.0003)s (6.10b)

The values of the uncertainties in the chirp massM and the coalescence time t0 are 68%-interval uncer-
tainties. This means that these uncertainties are 1 standard deviation in the accessory parameter.

6.2 Estimate the power in the amplitude time plot
Determining the correct order of magnitude of the amplitude is a tedious task, which goes beyond the
scope of this thesis. Despite this, an attempt is done to estimate the effective distance in Appendix C. For
this thesis, it is enough to estimate the power that pops up in the relation between the (dimensionless)
gravitational wave strain h(t) and the time t. The relation takes the form of Equation 2.12. Because the
gravitational wave strain is dimensionless, its logarithm may be taken without changes:

log(h(t)) = log(C3)− 1

4
log(t0 − t), (6.11)

where

C3 ≡
(
D4

eff · c11

5M5G5

)−1/4

. (6.12)

If one defines now x ≡ log(t0 − t) and y = log(h), the most appropriate fit function to determine the
power to which the time has to be raised in order to obtain a linear relationship between the gravitational
wave strain and the time equals:

y = n · x+ b, (6.13)

where n is the interesting parameter to be estimated. The factor should equal the value −1/4, but this
will be estimated with a least square fit for the data from Hanford and Livingston separately. In the fit
function of Equation 6.13, the value for t0 obtained in the frequency estimation will be used here. This
value equals t0 = −0.0103s

6.2.1 Estimation of the power for the data from Livingston
If the logarithm of the gravitational wave strain is now plotted against the logarithm of t0−t, the following
is obtained (See Figure 6.4):
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Figure 6.4: The logarithm of the gravitational wave strain plotted against the logarithm of the time for
the data from Livingston. The error bars are denoted with red bars and the blue line is the least squares
fit line.

The value of the power n is estimated to be:

n = −0.28± 0.04. (6.14)

This uncertainty is again one standard deviation, calculated with the rules in Appendix A.2. As can be
seen, this result is good in accordance with the expected value of −1/4 in Equation 2.12.

6.2.2 Estimation of the power for the data from Hanford
For the data from Hanford, the exact same is done as for the data from Livingston. The following figure is
obtained when plotting the logarithm of the gravitational wave strain from Hanford against the logarithm
of the time. See Figure 6.5 below.

Figure 6.5: The logarithm of the gravitational wave strain plotted against the logarithm of the time for
the data from Hanford. The error bars are denoted with red bars and the blue line is the least squares
fit line.

The value of the power obtained from the data from Hanford equals:

n = −0.24± 0.04 (6.15)

This uncertainty is of course also one standard deviation and is calculated via the rules in Appendix A.2.
As can be seen, both the value of the power obtained for the data from Livingston and from the data
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from Hanford are in accordance with the theoretical derivation (Equation 2.12). The uncertainties for
both the result of Hanford as well as for the result of Livingston are really small, which makes both the
values reliable.
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Chapter 7

Results for the binary with Time
varying mass

Now the results are shown for the binary system with time dependent mass, derived in Chapter 3.
Although this model is (astro) physically unlikely, it is worth studying the physics and behaviour of this
system. The results are shown in the same way as was done for the original model.

7.1 Fit function
In order to determine the form of the fit function, the fashion of Equation 3.3 is carefully considered.
This means that a fit function of the following form is appropriate:

y = A · x2 +B · x+ C (7.1)

Here y represents the frequency raised to the power −8/3 in Hz−8/3 and t the time in s. This is a fit
function where the model parameters and fit parameters are not linearly linked to one another, such that
a slightly tedious coordinate transform is necessary.

7.2 Relating model parameters to fit parameters
In the fit function, the three parameters A, B, and C are used as in Equation 7.1. The fit parameters
and model parameters are related to one another as follows (as can be concluded by comparing 3.3 with
7.1):

A =
(8π)8/3

5
·
(
G

c3

)5/3

·
[

5

3
· Ṁ0 · M2/3

0

]
(7.2a)

B =
(8π)8/3

5
·
(
G

c3

)5/3

·
[

10

3
Ṁ0M2/3

0 t0 −M5/3
0

]
(7.2b)

C =
(8π)8/3

5
·
(
G

c3

)5/3

·
[
M5/3

0 t0 −
5

3
Ṁ0M2/3

0 t20

]
(7.2c)

These relations are solved forM0, Ṁ0 and t0 to give the only physical solution (i.e. all parameters are
real and the massM0 is positive):

M0 =

(
125

(8π)8

)1/5

· c
3

G
·D3/10 (7.3a)

Ṁ0 =− 3

5
·
(

125

(8π)8

)1/5

· c
3

G
·A ·D−1/5 (7.3b)

t0 =− B +
√
D

2A
, (7.3c)
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Where D ≡ B2− 4 ·A ·C. This quantity appears in all three solutions, such that it is given its own name
for convenience. With these relationships, the prior for the model parameters can be converted to the
prior for the fit parameters, using a coordinate transform.

7.3 Appropriate prior for the fit and model parameters

7.3.1 Uniform prior for the model parameters
The prior for the chirp mass of the binary system is chosen to be 1 between 0 and 100 solar masses,
because the with this model estimated value of the mass is assumed to be somewhere in the vicinity of
the value obtained with the original model (also due to the fact that the mass change is assumed to be
small), and 0 outside of that. The value of the chirp mass is already estimated for a model with time
independent mass, so we might expect that the value this model predicts differs not that much from the
value of the original model, but we are not sure about this.
For the chirp mass loss per unit of time, the prior is chosen to be Gaussian around Ṁ0 = 0. This is chosen
this way, because if one does believe in General Relativity, this factor should be 0 (because the original
model does already fit very well to the data from the event GW150914). So it is most likely that the
value for Ṁ0 equals 0, but it could be possible that it is slightly greater or smaller than 0 in this model.
To include the most exotic values of the mass loss, the width σ of the prior is chosen to be σ = 250M�,
and the range the mass loss is assumed to lie within is chosen to be: |Ṁ0| ≤ 3σ.
For the coalescence time, a the exact same prior is used as for the original model. This time needs to
have the same value, because it is an intrinsic property of the binary (the binary does not merge at a
later time when using a quadratic fit instead of a linear fit). All three parameters are independent of one
another, such that the combined prior is just the product of the three separate priors. The prior takes
the form:

p(M0, Ṁ0, t0|I) =

{
N · exp

(
− (Ṁ0)2

2σ2

)
if − 3σ ≤ Ṁ0 ≤ 3σ and 0 <M0 ≤ 100M� & − 0.1 ≤ t0 ≤ 0.1

0 else,
(7.4)

Where N is a normalization factor. Again, it is much proper to normalize a prior (as is explained that
it is a probability density function on its own). The normalization factor N takes the form:

N =
1

[2.49986 · σ] · [100M�] · [0.2]
, (7.5)

where the prior is in the Ṁ0 integrated between −3σ ≤ Ṁ0 ≤ 3σ, which does not deviate much from an
integration from −∞ to +∞.

The prior in Equation 7.4 is the prior for the physical parameters M0, Ṁ0 and t0. A coordinate
transformation from these parameters to A, B and C gives the prior in the fit parameters. This is thus
a three dimensional transformation. The relations in Equation 7.2 are substituted, and the model prior
is multiplied with the determinant of the Jacobian:

det(J) ≡ det

(
∂(M,Ṁ0, t0)

∂(A,B,C)

)
= −2.82679 · 10−10c15

G5M3
0

= −1.33959 · 1067 ·D−9/10 (7.6)

The proportionality constant in the Jacobian can be left out, because this can be absorbed into the overall
normalization constant of the posterior probability density function. The prior for the fit parameters then
takes the form:

p(A,B,C|I) ∝

 1

(B2−4·A·C)9/10
· e

− 5.99·A2

[B2−4·A·C]2/5


if |A| ≤ 0.042 ∧ −0.012 ≤ B ≤ 5.01 · 10−3 ∧ |C| ≤ 7.52 · 10−4

0 else,
(7.7)

where the boundaries for A, B and C are determined via Equation 7.2, by looking at the maximum and
minimum.
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7.3.2 Uniform prior for the fit parameters
If the prior for the fit parameters is chosen to be uniform (with which the least χ-squared fit values
are calculated), the boundaries of the fit and model parameters do not change; the relation between the
model and fit parameters do not change. The parameters A, B and C are assumed to be independent.
The prior for the fit parameters takes the following form:

p(A,B,C) =

{
N if |A| ≤ 0.042 ∧ −0.012 ≤ B ≤ 5.01 · 10−3 ∧ |C| ≤ 7.52 · 10−4

0 else.
(7.8)

For convenience the normalization factor is chosen to be 1, but it can be chosen to be the reciprocal of
the three dimensional volume of the fit parameter space in order for the prior to be normalized:

N =
1

[0.042] · [0.01701] · [7.52 · 10−4]
. (7.9)

With the prior in Equation 7.8, and the help of the Jacobian in Equation 7.6, the prior for the model
parameters is then determined to be:

p(M0,Ṁ0, t0) ∝

{
M3

0 if 0 <M0 ≤M� ∧ |Ṁ0| ≤ 3σ ∧ |t0| ≤ 0.1

0 else.
(7.10)

This prior is not uniform, but again is nowhere sharply peaked. A prior is a choice, and together with
the fact that the prior is nowhere sharply peaked, also a constant prior should work for both the model
parameters and the fit parameters. The uniform prior for the fit parameters is used for calculating the
most likely values obtained with the least χ2 method described in Chapter 5. Here the sharply peaked
prior for the chirp mass loss Ṁ0 is lost, but a prior is a choice. It is expected that the value of the chirp
mass loss will be determined to be 0 (hence a Gaussian prior around 0), but also a constant prior can be
used (to make every value equally likely).

7.4 Plot and fit of the data
The quadratic fit function that maximizes the likelihood function (and with constant prior thus maximizes
the posterior probability density) is fitted through the data points, as can be seen in Figure 7.1 below.
Here the least χ-squared method is used, such that the uniform prior for the fit parameters of Equation
7.8 is used here. See Figure 7.1 below:

Figure 7.1: Quadratic fit function fitted through the data from the event GW150914. The red bars denote
the error bars at each data point, and the blue line represents the least squares quadratic fit line. The
grey shaded area is the area of one standard deviation for the parameters.
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For the fit parameters, the following values (including uncertainties) maximize the likelihood function:

A =(1.3± 0.3) · 10−2s2/3 (7.11a)

B =(1.7± 0.8) · 10−4s5/3 (7.11b)

C =(6.0± 6.3) · 10−7s8/3 (7.11c)

In the relations between the model and fit parameters, one can see that there is a factor B2 − 4AC,
which needs to be positive in order for the model parameters to be real. The uncertainties of A and B
are small compared to their value, whereas the value of C has a very large uncertainty. The value of C
can therefore be treat a bit different from the values of A and B (because A and B are determined more
accurately and are therefore more reliable). In order to satisfy the condition that B2 − 4AC > 0 holds,
the following upper bound for C is chosen:

C <
B2

4A
= 1.24785 · 10−7s8/3 (7.12)

Here the minimal value of B and maximal value of A is used. This is done because now the most extreme
values of A and B that follow from Equation 7.11 are taken into account. This ensures us that the solu-
tion is always physical. It turns out that the mass loss rate has a very small imaginary part, such that
it can be regarded as a small founding failure. The value of C that is chosen to work it lies in between
the possible range of values (−0.313 · 10−7 ≤ C ≤ 1.24785 · 10−7 equals: C = (4.67± 7.80) · 10−8, where
the uncertainty is determined to be half the obtained possible range for C.

For the coalescence time, the mass and the mass change per unit time, this means that the follow-
ing values maximize the Likelihood function (and minimize the sum of the squared distances between
model and data point):

M0 =(16.5± 8.0)M� (7.13a)

Ṁ0 =(−8.0± 3.0) · 102M�/s (7.13b)
t0 =(−0.013± 0.008)s (7.13c)

The uncertainties are calculated using 68%-intervals described in Appendix A.2, such that the values of
the uncertainties are 1 standard deviation of the accessory variable. As can be seen, the values of the
chirp massM0 and the coalescence time t0 are really in accordance with the values estimated with the
original model.

7.5 Posterior for fit parameters

7.5.1 Uniform prior for the fit parameters
The posterior and marginal probability density function for the fit parameters, with most probable values
given in the previous section, are calculated using the prior in Equation 7.8. It is determined using the
procedure described in Chapter 5 and the Python "Corner" package. This gives the following, as can be
seen in Figure 7.2
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Figure 7.2: Posterior and marginal probability density functions for the fit parameters of the quadratic
model. A uniform prior for the fit parameters is used. The values that maximize the likelihood function
are denoted with blue lines and blue dots.

7.5.2 Non uniform prior for the fit parameters
Using the non uniform prior for the fit parameters in Equation 7.7, again with the Python "Corner"
package a posterior is obtained using this prior. The following posterior function and marginal probability
density functions are found and plotted in Figure 7.3:
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Figure 7.3: Posterior and marginal probability density functions for the fit parameters of the quadratic
model. A non uniform prior for the fit parameters is used. The values that maximize the likelihood
function are denoted with blue lines and blue dots.

As can be seen, the probability density function with uniform prior for the fit parameters gives a more
accurate and reliable result.
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Chapter 8

Results for the spirally shaped mass

The last model that is considered is the spirally shaped mass distribution. The theoretical concepts are
derived in Chapter 3. The results are again shown in the same way as for the previous models. This
model is (astro) physically very unlikely to exist, but due to the unknown physical properties of this
model, this model could perhaps match the data really well.

8.1 Fit function used
As is already mentioned, the parameter α determines the size of the spiral. To take away one of the three
degrees of freedom, the α is fixed such that it gives the spiral the size of its own Schwarzschild radius.
The fit function in terms of the fit parameters is for this model given by (which can be concluded from
Equation 3.27):

y = m · (x− b), (8.1)

where y corresponds to f−4
GW in Hz−4 and x corresponds to the time in s. For convenience during

programming with Python, the same fit function is used for this model as is used for the original binary
model, except for the minus sign in front.

8.2 Relating model parameters to fit parameters
To obtain a relationship between the model and fit parameters, Equation 8.1 is compared to Equation
3.27 to obtain the following relationships:

m =
1

20
· 1

Φπ6c3
· S
P
·M3 (8.2a)

b =t0, (8.2b)

such that the inverse relations are given by:

M =

(
20Φπ6c3 · P

S

)1/3

·m1/3 = 4.199 · 109 ·m1/3 (8.3a)

t0 =b. (8.3b)

The determinant of the Jacobian of the coordinate transformation is calculated to be:

det(J) =

∣∣∣∣∂(M, t0)

∂(m, b)

∣∣∣∣ =
1

3
·
(

20Φπ6c3 · P
S

)1/3

·m−2/3. (8.4)

8.3 Prior for the model and fit parameters

8.3.1 Non uniform prior for the fit parameters
For the purpose of working with a prior based on the prior knowledge of the behaviour of the model
parameters, the prior for the model parameters is chosen to be uniform. All the values of the model
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parameters are equally likely. As is already explained before, only 2 parameters are used in the fit
function. This is due to the fact that the value of α is fixed (one value is chosen). For the mass and
coalescence time, a constant prior is chosen between a certain range. This range is chosen for the mass to
extend from 0 to 105 solar masses, and for the coalescence time the same range is chosen: −0.1 ≤ t0 ≤ 0.1.
The range in the mass is chosen this way because this is a very crazy model, which has, with all the other
constants together, a smaller pre-factor in the amplitude, such that the mass needs to be much larger to
match the data. The range for the coalescence time is chosen the same as for the other models, because
from the data it can be concluded that the coalescence time should be certainly within this range. The
mass and coalescence time are assumed to be independent, such that the prior becomes:

p(M, t0|I) =

{
N if 0 ≤M ≤ 105M� and − 0.1 ≤ t0 ≤ 0.1

0 else.
(8.5)

The normalization factor N can be chosen such that the prior is normalized (which gives a really elegant
probability density function). Then the value of N would be:

N =
1

[105 ·M�] · [0.2]
. (8.6)

This normalization constant can, as is already explained, also be absorbed into the overall normalization
constant of the posterior probability density function, such that for convenience the N can be chosen to
be 1. With the determinant of the Jacobian in Equation 8.4, the prior for the fit parameters becomes,
using the recipe described in Appendix A.1:

p(m, b|I) ∝

{
m−2/3 if 0 ≤ m ≤ 4.4 · 10−5 and − 0.1 ≤ b ≤ 0.1

0 else.
(8.7)

8.3.2 Uniform prior for the fit parameters
Again, for the least squares approximation, a uniform prior for the fit parameters is needed. This takes
the form as in Equation 8.8 below:

p(m, b|I) =

{
N if 0 < m ≤ 4.4 · 10−5 and − 0.1 ≤ b ≤ 0.1

0 else.
(8.8)

The normalization factor N is chosen to be 1 for calculational convenience in Python, but as is already
mentioned. A prior is a probability density function on its own, such that normalizing this function is
much more elegant. This constraints the normalization factor to take the value:

N =
1

[4.4 · 10−5] · [0.2]
(8.9)

With the prior in Equation 8.8 and the Jacobian of the coordinate transform in Equation 8.4, the prior
for the model parameters is calculated to be:

p(M, t0) ∝

{
M−2 if 0 < M ≤ 105M�

0 else.
(8.10)

This is a non uniform prior, but it is also not sharply peaked somewhere (except at M = 0, but this
value is excluded from the prior). This means that a constant prior is a good choice (because a prior can
be determined arbitrarily; it is a choice). Normalizing the prior in Equation 8.10 is a bit difficult (due
to the vertical asymptote at M = 0). This can be solved by taking a value that is slightly above M = 0
(for which a smaller or equal sign can be used, such that one has a lower bound that is included).
The result is again shown using both priors; a non uniform prior for the fit parameters determined from a
uniform prior for the model parameters (Equation 8.7 is used to determine the posterior) and a uniform
prior for the fit parameters (Equation 8.8 is used to determine the posterior).
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8.4 Plot and fit of the data: uniform prior for fit parameters
Using the least χ2-method described in Section 5, the most likely fit parameters are determined and with
them the least square fit line is fitted. The uniform prior of Equation 8.8 is used. See Figure 8.1 below:

Figure 8.1: Caption

The values for m and b that minimize the residue are determined to be:

m =(−3.3± 0.6) · 10−7s3 (8.11a)
b =(−0.0112± 0.0003)s (8.11b)

The best fit value for m, the value that maximizes the likelihood function, is a negative value. From this
we can conclude, by comparing this with Equation 8.1, that the prefactor in front of (t − t0), needs to
be negative. All constants in front of (t − t0) in Equation 3.27 are positive quantities (which means C0

is a positive constant), whereas the only thing not yet known is the mass M . The only way that the
negative value of m can be matched with the prefactor, is that M needs to be a negative number. This
immediately rules out this theoretical model, because only a real positive mass is a physically realistic
mass. This model can be excluded from potential sources that create these kind of gravitational wave
signals. This is due to the fact that the data predict an increasing frequency as function of time (for
times t < t0), whereas this model has a decreasing frequency fashion. It was important to check if maybe,
within the uncertainty, m could have a positive value, such that this model would allow a positive mass.
But, as can be seen, the fit parameter m can only have a negative value within the uncertainty. The
value of the mass is calculated to show what happens. With these values, the Mass and Coalescence time
are determined to be:

M =(−2.0± 0.1) · 104M� (8.12a)
t0 =(−0.0112± 0.0003)s. (8.12b)

8.5 Posterior probability density function for the fit parameters

8.5.1 Uniform prior for the fit parameters
The values that minimize the χ2 are determined using the uniform prior of Equation 8.8. The distribution
of the fit parameters using this prior can be seen in Figure 8.2 below:
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Figure 8.2: Likelihood function and marginal probability density functions for the fit parameters of the
spiral model. A uniform prior for the fit parameters is used.

8.5.2 Non uniform prior for the fit parameters
As is done for the previous models, a posterior probability density function and marginal probability
density functions for the fit parameters are plotted using the non uniform prior of Equation 8.7. See
Figure 8.3 below:

Figure 8.3: Likelihood function and marginal probability density functions for the fit parameters of the
spiral model. A non uniform prior for the fit parameters is used.
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As can be seen, the non uniform prior for the fit parameters does not work as well as the constant prior
for the fit parameters. The uniform prior is more accurate, as can be seen by comparing Figure 8.3 with
Figure 8.2. This is due to the fact that the posterior takes a much less complex form if a constant prior
is used for the fit parameters (such that the most likely values are calculated more easily).
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Part III

Conclusion
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Chapter 9

Conclusion

In the previous part, the theoretically derived crazy models are fitted to the data from the LIGO detectors
in Livingston and Hanford. Each model will be evaluated separately. The physically likeliness will be
regarded, as well as the match with the data is discussed.

9.1 The original model
The original model consists of two black holes orbiting around each other. Their separation distance
decreases, whereas their orbital frequency (and with that the gravitational wave frequency) increases due
to Keplers laws. This model is of course physically very likely, because this model is made for a binary
system that is being observed. This model belongs to the physics that created these gravitational waves.

The coalescence time matches with the gravitational wave signal, because in the plot of the signal one
can see that the signal has a rapidly decreasing frequency and amplitude after the estimated coalescence
time t0. This value is (within the uncertainty) a very good estimation of the real time of merging.

The estimated value of the chirp mass is in the same order of magnitude as the one estimated by Ref.
[1]. In this article, a simplified version of the determining of the chirp mass is presented. In this thesis,
the same method is used as is described in this article. With this method, roughly the same value for the
chirp mass is obtained, but due to the fact that an even more simplified version is used in this thesis, the
value deviates a bit. In Ref. [1], there is done more research on the maximum value of the chirp mass
and on the value of the masses of the individual black holes, but this was not the aim of this thesis. Only
an estimation of the chirp mass was needed, because then different models can be compared.

9.2 The original model with time dependent chirp mass
In this model, the same physics is assumed to hold, except for a linear chirp mass change in time. This
linear assumption is needed in order for the derivation to be still valid.

First, the estimation of the chirp mass is considered. The most likely value of the chirp mass that
is determined with the original model, lies really well within the uncertainty determined with this model.
Despite that, the most probable value of the chirp mass is slightly smaller with this model than is de-
termined with the original model, whereas the uncertainty of this value determined with this model is
smaller than the most likely value! This means that the most likely value is really reliable, which gives a
reason to accept the model as possible crazy model that matches the data.

For the coalescence time, the most probable value determined with this model matches the most probable
value determined with the original model very well. Also the uncertainty is smaller than the value of the
coalescence time, which makes this value reliable.

The mass loss is unfortunately large compared to the total mass, which is physically not possible. This
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makes this model unlikely to happen.

The values obtained with this model for the chirp mass M′, the constant chirp mass change per unit
of time Ṁ′0 and the coalescence time t0 all have a relatively small uncertainty, which makes them very
reliable. This model cannot be immediately ruled out from the possible models that could be matched to
the data obtained at Livingston and Hanford from the gravitational wave event GW150914; it matches
the data from LIGO better than expected. But, this model is physically unlikely to happen because the
mass loss is really large compared to the total mass.

9.3 Spiral model
For the spiral model, the possible value of its mass M and an offset time t0 can be determined. In the
derivation of this model, these parameters pop up. The offset time is a bit a strange parameter in this
model, because the spiral only loses energy by slowing down (and there is no coalescence or merging in
this model), such that this offset time can be interpreted as the time at which the spiral ‘magically’ stops
rotating.

The value of this offset time really matches the signal, as it really agrees with the value of the coa-
lescence time estimated with the original model. In the signal, one can see that the frequency becomes
infinite at a certain time t0 (i.e. the coalescence time in the original model). This time stamp is a
property of the signal, which means that the same value should be obtained. The most probable value
for this offset time calculated for the spiral model corresponds really well to the most likely value for the
coalescence time estimated with the original model. The range of possible values is the same, i.e. the
uncertainty is roughly the same for this model compared to the original model.

The most probable value for the mass of the spirally shaped mass distribution is a totally different
story. The mass that is most likely has a negative sign, which is quite logical. The binary system is
losing energy (i.e. getting from negative values close to zero to negative numbers farther away from zero)
as it spins up. If the spiral would have a positive mass, it would emit gravitational waves as it slows
down, but the energy goes from negative numbers far away from zero to negative numbers close to zero.
This is opposite to the binary system, such that a positive mass could be ruled out. It could be possible
that within the uncertainty a positive mass belonged to the possible values, but it turns out that only
negative values within the uncertainty are possible. A negative mass causes the energy to follow the
same fashion as the energy does for the binary system. Therefore the most probable value for the total
mass must be a negative value, as can be concluded. The fact that the mass is negative shows that the
model is completely (astro) physically unlikely, because negative masses are only a theoretical concept in
current physics. Despite this, the (negative) value that is estimated is very reliable, because the relative
uncertainty (i.e. the uncertainty divided by the most probable value) is small. But, it is only reliable
if the concept of negative mass would be embraced in physics, if for example experimental results or
astrophysical relations with negative masses are obtained. The mass is roughly 104 times as large as the
mass of our own sun, which is a really common value for a mass in astrophysics. This object is assumed
to have a size larger than its Schwarzschild radius, because the form of the distribution (spirally shape) is
known. If such a model would exist, one should know the form of the distribution before the physics can
be done. Otherwise it is just gambling about the shape of the distribution by looking how the frequency
relates to the time.
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Chapter 10

Discussion

In the previous chapter, the conclusion about the crazy models is taken: it is decided if they are (astro)
physically likely or if they are improbable. This is done on the basis of the values of the model parameters;
the (chirp) mass, coalescence time or chirp mass change per unit of time are determined and are compared
to physically realistic values and their reliability is checked, i.e. how do their uncertainties behave. In
this master thesis, the data is modeled in a really basic way with Python, in an even more simplified
way as the researchers of Ref. [1] did. This means that the estimations and processes such as whitening
could be done more precise when an extensive Python code is written and used. For the purpose of this
thesis, it was enough to work with the basic Python code, written by myself. This is justified by the fact
that only the procedure of processing gravitational wave data and the physical relevance of the models
needed to be studied.

For further research, more crazy models can be thought of. For these newly invented models a theo-
retical derivation is needed in order for the data to be matched, in order to obtain a relation for the
frequency as function of the time. For these models, again a likelihood function can be made, and their
physically relevance and physical likeliness can be checked.

Furthermore, one could extend the crazy models discussed in this thesis as follows for example:

The spiral model could for example be extended by making its size time dependent. The angular mo-
mentum could be taken constant, such that the rotational angular frequency ω can be linked to the size
factor α. This gives a spiral shaped rotating mass distribution, that can collapse and that eventually
forms a perfect sphere. This gives an interpretation to the integrating constant t0 that appears in the
equation that describes the frequency as function of time. Then the time t0 could be interpreted as the
time of collapsing. This kind of spirally shaped rotating distribution was tried by me, but the equation
that needed to be solved in order to find a relation between the frequency and the time could not be
expressed in elementary functions. The solution needs to be approximated or estimated numerically,
which is beyond the scope of this Master Thesis.

Also the current spirally shaped distribution can be extended by taking multiple values of α into ac-
count; it can be studied if different values of α fit the model even better or worse, or maybe give a
positive mass as outcome.

The binary model with time dependent mass could for example be extended by not assuming a linear
mass change, but taking higher order terms into account. One should start from elementary Newtonian
mechanics, where the mass rate of change is taken into account as a so called ‘thrust’ force. This gives
a totally different derivation, which makes the problem more complicated. This model I tried to derive
myself, but it turned out to be a problem too complicated to solve within the Master Thesis. The choice
is made to make the mass only linear time dependent, to learn how to work with gravitational wave data
and different fit functions, rather than to do heavy time consuming hard elementary Newtonian physics.
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Appendix A

Probability Identities

A.1 Coordinate Transformations
Assume there are N variables {Xi}, i ∈ [1, N ]. A probability density function is given by:

p({Xi}) = f(X1, . . . , XN ), (A.1)

where the probability density function is a function of all variables. One can also express the probability
density function in terms of some other N variables {Yi}, where the probability density function for the
variables {Yi} take the form:

p({Yi}) = g(Y1, . . . YN ). (A.2)

The variables {Yi} are related to the variables {Xi} as follows:

X1 =h1(Y1, . . . , YN ) (A.3a)
... (A.3b)

XN =hN (Y1, . . . , YN ), (A.3c)

where these hi are the functional relations between the 2 sets. A furthermore necessary condition is that
the determinant of the Jacobian of this transformation does not vanish (i.e. it does have an inverse). The
Jacobian J is given by:

J ≡ ∂Xi

∂Yj
, with det(J) 6= 0. (A.4)

A true probability for the first set ({Xi}) that a point (X1, ..., XN ) lies within the infinitesimal volume
element bounded by the values X1, ..., XN and X1 + dX1, ..., XN + dXN should equal the probability for
the second set ({Yi}) that a point (Y1, ..., YN ) lies within the infinitesimal volume element bounded by
the values Y1, ..., YN and Y1 + dY1, ..., YN + dYN . The conversion factor equals the Jacobian:

g({Yi}) = f({Xi}) ·
∣∣∣∣∂Xi

∂Yj

∣∣∣∣ = f({Xi}) · |det(J)| (A.5)

A.2 Uncertainties
The uncertainties in all the quantities in this thesis are calculated via the rules of 68%-intervals. The
symbol SX is used for the 68% uncertainty in variable X:

For a quantity Y depending on N other quantities {Xi} (with i ∈ [1, N ]) with uncertainties Si,
i.e. Y = Y ({Xi}), the uncertainty in variable Y is calculated to be:

SY =

√√√√ N∑
i=1

(
∂Y

∂Xi

)2

· S2
i . (A.6)
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Appendix B

Derivations

B.1 Transforming a tensor to the Transverse Traceless gauge
As is already explained, the metric perturbation is yet trace less by the definition of the quadrupole
moment tensor, but not yet transverse. Only the spatial part is possibly nonzero, whereas all temporal
components are zero. The metric perturbation is made transverse by projecting it onto the transverse
plane. In this thesis, the Transverse trace less gauge is applied in the frame where the wave is propagating
in the z-direction. This means that the wave has unit wave vector k̂ = (0, 0, 1) in this frame. The
projection tensor takes the following form for this wave vector:

Pij = δij − kikj , (B.1)

which in matrix notation looks like:

Pij =

1 0 0
0 1 0
0 0 0

 . (B.2)

Because we are working with tensors with 2 indices, each index ’needs to be projected’. Take a general
yet trace less tensor Aij . The transverse projected tensor ATij takes the form:

ATij = P ki P
l
jAkl. (B.3)

The problem now is that this tensor ATij is not necessarily trace less anymore. This is made trace less
again by subtracting half the trace from each diagonal element (because the spatial row and column
containing a z-entry are made 0 due to the transverse property):

ATTij =

(
P ki P

l
j −

1

2
PijP

kl

)
Akl. (B.4)

B.2 Quadrupole and Inertia tensor
The definition for the inertia tensor is given by:

Iij ≡
∫
ρ(
⇀
x) ·

[
|⇀x |2δij − xixj

]
d3x, (B.5)

where
⇀
x is the position vector that points from the origin to a bit of mass dm = ρ(

⇀
x)d3x. The Quadrupole

moment tensor is closely related to the inertia tensor. The Quadrupole moment tensor is defined as:

Qij ≡
∫
ρ(
⇀
x) ·

[
xixj −

1

3
|⇀x |2δij

]
d3x. (B.6)

As can be seen, the quadrupole moment tensor is by definition traceless, whereas this does not hold for
the inertia tensor. The quadrupole moment tensor is related to the inertia tensor via:

Qij = −Iij +
1

3
· Tr(I) · Id(3), (B.7)

where Id(3) represents the 3 × 3 identity matrix.
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B.3 Combining a sine and cosine wave
Assume a wave form takes the following form:

w(t) = A · cos(C · t) +B · sin(C · t). (B.8)

The prefactors A and B can without loss of generality be written as:

A =P · cos(Q) (B.9a)
B =− P · sin(Q), (B.9b)

due to the fact that there are still two degrees of freedom (P and Q), and because there exist a unique
solution for P and Q in terms of A and B. When using the addition rule for cosines, on obtains for the
wave signal:

w(t) = P · cos(Q) · cos(B · t)− P · sin(Q) · sin(B · t) = P · cos(B · t+Q), (B.10)

where now

P =
√
A2 +B2 (B.11a)

Q = arctan

(
−B
A

)
. (B.11b)
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Appendix C

Determining the effective physical
distance

C.1 Determining the effective physical distance for Livingston

C.1.1 Fit function
The fit function should be of the form of the amplitude in the model, i.e. Equation 2.12. The function
used to determine the model parameters is of the following form:

y = −A · (x−B), (C.1)

where y corresponds to the gravitational wave amplitude (strain) raised to the power −4 (dimensionless)
and x corresponds to the time in s.

C.1.2 Relating fit parameters to model parameters
The parameters in Equation C.1 (A and B) are related to the model parameters Deff and t0 as follows:

A =
c11

5G5M5
·D4

eff (C.2a)

B =t0, (C.2b)

which are easily inverted to give:

Deff =

(
5

c

)1/4

·
(
MG

c2

)5/4

·A1/4 (C.3a)

t0 =B. (C.3b)

The Jacobian is calculated to be:

∂Deff

∂A
=

1

4
·
(

5

c

)1/4

· M5/4 ·A−3/4. (C.4)

C.1.3 Prior for model and fit parameters
Uniform prior for the model parameters

For the fit parameters, the prior is determined as follows: The coalescence time t0 should be the same
as for the frequency plot, because both the differential equation for the amplitude evolution as well as
for the frequency evolution are integrated between time t and the coalescence time. It is a time stamp
at which the frequency should be 0 and the amplitude should be infinite, according to the theory of the
inspiraling binary and the characteristic of these gravitational waves. For the distance, the upper bound
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for the prior is taken to be the order of magnitude of 10 times the farthest star discovered at Earth, just
to be sure the binary is possibly located farther away than the farthest star. The lower bound can be
chosen to be 0 for simplicity:

p(Deff, t0|I) =

{
N if 0 ≤ Deff ≤ 1027 & − 0.1 ≤ t0 ≤ 0.1

0 else.
(C.5)

The normalization factor N can be chosen to be the reciprocal of the range of the parameters, but for
calculational convenience this is chosen to be 1. Because the fit parameter B is exactly equal to the model
parameter t0, no coordinate transform is needed for this parameter. The coordinate transform Deff → A
needs a Jacobian, where only the variable A appearing here is kept; The overall proportionality constant
will be omitted, because this can be corrected with the overall normalization constant for the likelihood
function. The prior for the fit parameters takes the form:

p(A,B|I) = p(Deff, t0|I) · ∂Deff

∂m
∝

{
A−3/4 if 0 ≤ A ≤ 1.04225 · 1093 & − 0.1 ≤ B ≤ 0.1

0 else,
(C.6)

where the boundaries are calculated via the relation between the model parameters and the fit parameters
in Equation C.2.

Uniform prior for the fit parameters

As is done for each model, the least χ2-method is valid as long as a uniform prior for the fit parameters
is used. For this model, this takes the form:

p(A,B|I) =

{
N if 0 < A ≤ 1.04225 · 1093 ∧ −0.1 ≤ B ≤ 0.1

0 else,
(C.7)

where the normalization factor N can be chosen to be the reciprocal of the (two dimensional) range of
the parameters:

N =
1

[1.04225 · 1093] · [0.2]
. (C.8)

In this way the prior is defined in a much proper way, but for calculational convenience (as it is normal-
ized), the normalization constant is chosen to be 1.

C.1.4 Plot and fit of the data
To determine the values of the fit parameter that gives the smallest residue, a least squares fit is done
with Python. The result is shown in Figure C.1 below:

Figure C.1: Dimensionless strain measured at the detector in Livingston plotted against the time. The
red bars denote the error bars, whereas the blue line represents the least squares fit line. Here a uniform
prior for the fit parameters is used.
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In order to determine the value of the parameter A as precise as possible, the y coordinate of the data is
multiplied with a factor of 10−90. This causes the y coordinate of the data to be in the order of 10−1.
By looking at the fit function in Equation C.1, it can be seen that the parameter A is scaled by the
same factor, such that this parameter has the same order of magnitude as the data. The parameter B is
unchanged, because all the multiplication is stored in this parameter A due to this specific form of the
fit function.

C.1.5 The values of the model and fit parameters
The fit parameters that minimize the residue are determined with the least square method to have the
following values for the detector located at Livingston:

A =(19.3± 3.8) · 1090s−1 (C.9a)
B =− 0.013± 0.003s, (C.9b)

where the uncertainties are also dermined by the Python least square package. The most likely values of
the model parameters are calculated from the values of the fit parameters to be:

t0 =− 0.013± 0.003s (C.10a)

Deff =(3.0± 0.1) · 1026m (C.10b)

where the uncertainties are calculated by the 68% interval calculation rules described in Appendix A.2.

C.1.6 Likelihood function for the fit parameters; uniform model parameter
prior

Again, the Python Corner package is used to calculate a contour plot of the likelihood function for A and
B, and to determine the marginal probability density functions for both of them separately. The values
determined with the least square method are plotted as the blue lines. The result is shown in Figure C.2
below:

Figure C.2: Likelihood function and Marginal probability density function for the fit parameters for the
detector in Livingston. The blue dots represent the most likely values of the fit parameters. A non
uniform prior for the fit parameters is used.
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C.2 Determining the effective physical distance for Hanford

C.2.1 Fit function
The fit function is of course exactly the same as for the determination of the effective physical distance
for Livingston. See Equation C.1.

C.2.2 Relating fit parameters to model parameters
Because the same fit function and the same theoretical model are used, the relation between fit and model
parameters is exactly equal to the case for Livingston, as well as the form of the Jacobian.

C.2.3 Prior for model and fit parameters
Also the same prior for the model and fit parameters is used. Again, the reason for this is the same fit
function and the same parameters that are determined (Deff and t0).

C.2.4 Plot and fit of the data
For the detector in Hanford, the data slightly differs from the data measured by the detector in Livingston.
The 1/4 behaviour should be present, but the effective distance is slightly different. This is due to the
fact that the effective distance depends on the real physical distance from source to detector and it
depends on the antenna response factors. These factors have different values for each detector, because
each detector is located on a different position on Earth and may be oriented in a certain way. These
differences between detectors are stored in these antenna response factors. The strain to the power −4
is plotted against the time can be seen in Figure C.3 below.

Figure C.3: Dimensionless strain measured at the detector in Hanford plotted against the time. The red
bars denote the error bars, whereas the blue line represents the least squares fit line. Here a uniform
prior for the fit parameters is used.

C.2.5 The values of the model and fit parameters
With the least squares package of Python, the values for the fit parameters A and B are determined to
be:

A =(8.2± 3.0) · 1090s−1 (C.11a)
B =(−0.011± 0.002)s. (C.11b)
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With these values of the fit parameters, the values for the model parameters that maximize the likelihood
function are calculated via Equation C.3:

Deff =(2.4± 0.2) · 1026m (C.12a)
t0 =(−0.012± 0.002)s (C.12b)

C.2.6 Likelihood function for the fit parameters; uniform model parameter
prior

With help of the Python ‘corner package’, the likelihood function as well as the marginal probability
density function are determined. This is done via the recipes in Chapter 5. See Figure C.4 below:

Figure C.4: Likelihood function and Marginal probability density function for the fit parameters for the
detector in Hanford. The blue dots represent the most likely values of the fit parameters. A non uniform
prior for the fit parameters is used.
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