Making Quantum Gravity Computable, 22-06-2017
Monte Carlo methods in Dynamical Triangulations
Part II: Higher dimensions
Timothy Budd

IPhT, CEA, Université Paris-Saclay timothy.budd@cea.fr, http://www.nbi.dk/~budd/

Outline

- Day 1: 2D random geometry
- Combinatorial representation
- Markov Chain Monte Carlo (MCMC) methods
- Matter coupling
- Observables
- Day 2: Dynamical Triangulations in higher dimensions
- Quantum gravity
- Combinatorial representation
- MCMC methods
- Phase diagram
- Causal Dynamical Triangulations
- Tutorials: numerical analysis of various 2D random geometries
- Measure observables for random geometries (produced by black box)
- Extract critical exponents.
- Experiment with (new?) observables.
- Conclusions will be collected at the end and be discussed.

A space-time path integral?

Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- Destructive interference is delicate
- How to interpret integrand?
- Numerical evaluation is hard

A space-time path integral?

Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- Destructive interference is delicate-
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard
- Classical solutions? Action is unbounded below.

A space-time path integral?

Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integrał
- What is a good diffeo-invariant measure?
- Destructive interference is delicate-
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard- doable in principle
- Classical solutions? Action is unbounded below.
- Does the integral converge?
- Does it possess a continuum limit?

$$
\sum \iint \frac{\mathrm{d} \mu\left(\ell_{i}\right)}{\mathrm{Diff}} e^{-S\left[g_{a b}\right]}
$$

\{PL geometries $\left.g_{a b}\right\}$

A space-time path integral?

Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integrał
- What is a good diffeo-invariant measure?
- Destructive interference is delicate-
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard doable in principle
- Classical solutions? Action is unbounded-below.
- Does the integral converge?
- Does it possess a continuum limit?

$$
\sum e^{-S\left[g_{a b}\right]} \quad \leftarrow \text { Discretize }
$$

\{Combinatorial geometries $\}$

A space-time path integral?

Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integrał
- What is a good diffeo-invariant measure?
- Destructive interference is delicate-
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard doable in principle
- Classical solutions? Action is unbounded-below.
- Does the integral converge?
- Does it possess a continuum limit?

$$
\sum e^{-S\left[g_{a b}\right]} \quad \longleftarrow \text { Discretize }
$$

\{Combinatorial geometries of fixed topology\}

What would be the best scenario?

Piecewise linear geometry

- D-simplex: $\left\{\sum_{i=0}^{D} \lambda_{i} \mathbf{x}_{i}: \lambda_{i} \in[0,1], \sum \lambda_{i}=1\right\} \subset \mathbb{R}^{D}$ with Euclidean geometry.

$D=2$

$D=3$

Piecewise linear geometry

- D-simplex: $\left\{\sum_{i=0}^{D} \lambda_{i} \mathbf{x}_{i}: \lambda_{i} \in[0,1], \sum \lambda_{i}=1\right\} \subset \mathbb{R}^{D}$ with Euclidean geometry.

$D=2$

$D=3$

$D=4$
- D-simplices can be glued into larger metric spaces along matching ($D-1$)-simplices.

Piecewise linear geometry

- D-simplex: $\left\{\sum_{i=0}^{D} \lambda_{i} \mathbf{x}_{i}: \lambda_{i} \in[0,1], \sum \lambda_{i}=1\right\} \subset \mathbb{R}^{D}$ with Euclidean geometry.

$D=2$

$D=3$

$D=4$
- D-simplices can be glued into larger metric spaces along matching ($D-1$)-simplices.

- Resulting geometry has curvature supported on ($D-2$)-simplices.

Einstein-Hilbert action

- Integrated curvature is naturally expressed in terms of deficit angles [Regge, '61]

$$
\int \mathrm{d}^{D} \times \sqrt{g} R \longrightarrow \sum_{(D-2)-\text { simplices } \sigma}|\sigma|\left(2 \pi-\theta_{\sigma}\right)
$$

- If all simplices are taken of equal shape (say, equilateral) then linearity of Regge action implies that $\mathrm{EH}\left(+\int \mathrm{d}^{D} \times \sqrt{g} \Lambda\right)$ is a simple linear combination

$$
\kappa_{D} N_{D}-\kappa_{D-2} N_{D-2} .
$$

- Makes sense to include in MCMC at least such two terms in Boltzmann weight.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.
- Generalize: For D-dimensional geometry, $(n, a) \rightarrow\left(n, a_{2}, \cdots, a_{D}\right)$. a_{d} maps half-edge i to its d-dimensional neighbor $a_{d}(i)$.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.
- Generalize: For D-dimensional geometry, $(n, a) \rightarrow\left(n, a_{2}, \cdots, a_{D}\right)$. a_{d} maps half-edge i to its d-dimensional neighbor $a_{d}(i)$.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.
- Generalize: For D-dimensional geometry, $(n, a) \rightarrow\left(n, a_{2}, \cdots, a_{D}\right)$. a_{d} maps half-edge i to its d-dimensional neighbor $a_{d}(i)$.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.
- Generalize: For D-dimensional geometry, $(n, a) \rightarrow\left(n, a_{2}, \cdots, a_{D}\right)$. a_{d} maps half-edge i to its d-dimensional neighbor $a_{d}(i)$.

Combinatorial representation

- Recall: need next and adjacent to navigate a map, or a polyhedron.
- Generalize: For D-dimensional geometry, $(n, a) \rightarrow\left(n, a_{2}, \cdots, a_{D}\right)$. a_{d} maps half-edge i to its d-dimensional neighbor $a_{d}(i)$.
- Cells of various dimensions are identified as orbits. In 3D: $\left(n, a_{2}\right) \rightarrow$ polyhedra, $\left(n, a_{3}\right) \rightarrow$ faces, $\left(a_{2}, a_{3}\right) \rightarrow$ edges, $\left(n \circ a_{2}, n \circ a_{3}\right) \rightarrow$ vertices.

Remarks on combinatorics in 3D

- When does a triple of permutations (n, a_{2}, a_{3}) determine a topological 3-manifold?

Remarks on combinatorics in 3D

- When does a triple of permutations $\left(n, a_{2}, a_{3}\right)$ determine a topological 3-manifold?
$-a_{d} \circ a_{d}=1, a_{d}(x) \neq x$ for all x and d.
- Proper gluing: $n \circ a_{3} \circ n=a_{3}$.
- Polyhedra (orbits under n, a_{2}) should have 3-ball topology (i.e. boundary S^{2}): Euler formula!
- Neighbourhood of vertices (orbits under $n \circ a_{2}, n \circ a_{3}$) should have 3-ball topology: Euler formula!

Remarks on combinatorics in 3D

- When does a triple of permutations $\left(n, a_{2}, a_{3}\right)$ determine a topological 3-manifold?
$-a_{d} \circ a_{d}=1, a_{d}(x) \neq x$ for all x and d.
- Proper gluing: $n \circ a_{3} \circ n=a_{3}$.
- Polyhedra (orbits under n, a_{2}) should have 3-ball topology (i.e. boundary S^{2}): Euler formula!
- Neighbourhood of vertices (orbits under $n \circ a_{2}, n \circ a_{3}$) should have 3-ball topology: Euler formula!
- What is the topology of the resulting 3-manifold?

Remarks on combinatorics in 3D

- When does a triple of permutations $\left(n, a_{2}, a_{3}\right)$ determine a topological 3-manifold?
$-a_{d} \circ a_{d}=1, a_{d}(x) \neq x$ for all x and d.
- Proper gluing: $n \circ a_{3} \circ n=a_{3}$.
- Polyhedra (orbits under n, a_{2}) should have 3-ball topology (i.e. boundary S^{2}): Euler formula!
- Neighbourhood of vertices (orbits under $n \circ a_{2}, n \circ a_{3}$) should have 3-ball topology: Euler formula!
- What is the topology of the resulting 3-manifold?
- Unfortunately, no simple combinatorial/algorithmic way to decide!
- Luckily, any two geometries with equal topology are connected by a finite sequence of local moves!
- Situation very similar in 4D (and higher).

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in $2 D$, tetrahedra in 3D, 4-simplices in 4D).

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in 2D, tetrahedra in 3D, 4-simplices in 4D).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in $2 D$, tetrahedra in $3 D$, 4-simplices in $4 D$).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.
- Label the vertices of a D-triangulation.
- Simplicial D-triangulation: each edge, face, \ldots, D-simplex must be uniquely characterized by its set of incident vertices.

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in $2 D$, tetrahedra in $3 D$, 4-simplices in $4 D$).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.
- Label the vertices of a D-triangulation.
- Simplicial D-triangulation: each edge, face, \ldots, D-simplex must be uniquely characterized by its set of incident vertices.

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in $2 D$, tetrahedra in $3 D$, 4-simplices in $4 D$).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.
- Label the vertices of a D-triangulation.
- Simplicial D-triangulation: each edge, face, \ldots, D-simplex must be uniquely characterized by its set of incident vertices.

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in $2 D$, tetrahedra in $3 D$, 4-simplices in $4 D$).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.
- Label the vertices of a D-triangulation.
- Simplicial D-triangulation: each edge, face, \ldots, D-simplex must be uniquely characterized by its set of incident vertices.

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in 2D, tetrahedra in 3D, 4-simplices in 4D).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.
- Label the vertices of a D-triangulation.
- Simplicial D-triangulation: each edge, face, \ldots, D-simplex must be uniquely characterized by its set of incident vertices.

Simplicial manifolds

- D-triangulation: all D-cells are taken to be D-simplices (i.e. triangles in 2D, tetrahedra in 3D, 4-simplices in 4D).
- In D-triangulations all dynamical information is stored in a_{D}.
- Amounts to $(D+1)!/ 2$ numbers to store/update per D-simplex.
- Label the vertices of a D-triangulation.
- Simplicial D-triangulation: each edge, face, \ldots, D-simplex must be uniquely characterized by its set of incident vertices.
- Knowing the set $\{\{1,3,4,5\},\{2,3,4,5\},\{2,4,5,6\}, \ldots\}$ of D-simplices, can reproduce the triple (n, a_{2}, a_{3}) up to relabeling (and orientation).

Triangulation size?

- What is the "size" of a D-triangulation?

$$
N=\# \text { of half-edges (size of } n, a_{d} \text {) }
$$

$$
N_{0}=\# \text { of vertices }
$$

$$
N_{1}=\# \text { of edges }
$$

$N_{D}=\#$ of D-simplices

Triangulation size?

- What is the "size" of a D-triangulation?

- Relations: $N=N_{D}(D+1)!/ 2,2 N_{D-1}=N_{D}(D+1)$, $\sum_{k=0}^{d}(-1)^{k} N_{k}=\chi$ (Euler characteristic). In $D \geq 4$ more linear (Dehn-Sommerfield) relations.

Triangulation size?

- What is the "size" of a D-triangulation?

- Relations: $N=N_{D}(D+1)!/ 2,2 N_{D-1}=N_{D}(D+1)$, $\sum_{k=0}^{d}(-1)^{k} N_{k}=\chi$ (Euler characteristic). In $D \geq 4$ more linear (Dehn-Sommerfield) relations.
- Only $\left\lfloor\frac{D+1}{2}\right\rfloor$ independent numbers. In 3D and 4D these are usually taken to be N_{D} and N_{D-2}, or N_{D} and N_{0}.

Triangulation size?

- What is the "size" of a D-triangulation?

- Relations: $N=N_{D}(D+1)!/ 2,2 N_{D-1}=N_{D}(D+1)$, $\sum_{k=0}^{d}(-1)^{k} N_{k}=\chi$ (Euler characteristic). In $D \geq 4$ more linear (Dehn-Sommerfield) relations.
- Only $\left\lfloor\frac{D+1}{2}\right\rfloor$ independent numbers. In 3D and 4D these are usually taken to be N_{D} and N_{D-2}, or N_{D} and N_{0}.
- Recall the EH action $S\left[N_{D}, N_{D-2}\right]=\kappa_{D} N_{D}-\kappa_{D-2} N_{D-2}$ is exactly a linear combination of these.
- As we will see: for fixed N_{D}, varying the ratio N_{D-2} / N_{D} has a large effect on the random geometries!

Labeling \& symmetry

- Recall from yesterday: in 2D for fixed N_{2} a uniform labeled triangulation \mathfrak{t} with N_{2} triangles is equivalent to an unlabeled triangulation $\tilde{\mathfrak{t}}$ with probability proportional to $1 /|\operatorname{Aut}(\tilde{\mathfrak{t}})|$:

$$
Z_{N_{2}}=\sum_{\begin{array}{c}
\text { Iabeled } \\
\text { triangulations } \mathfrak{t}
\end{array}} 1=\left(3 N_{2}\right)!\sum_{\begin{array}{c}
\text { unlabeled } \\
\text { triangulations } \tilde{\mathfrak{t}}
\end{array}} \frac{1}{|\operatorname{Aut}(\tilde{\mathfrak{t}})|}
$$

- No longer equivalent if N_{2} (or N_{D} in dimension D) is allowed to vary.
- Settle upon convention that $S\left[N_{D}, N_{0}\right]$ is action for unlabeled triangulations:

$$
Z=\sum_{\substack{\text { abeled } \\
\text { triangulations } \mathfrak{t}}} \frac{e^{-S\left[N_{D}, N_{0}\right]}}{(\# \text { labels })!}=\sum_{\begin{array}{c}
\text { unlabeled } \\
\text { triangulations } \tilde{\mathfrak{t}}
\end{array}} \frac{e^{-S\left[N_{D}, N_{0}\right]}}{|\operatorname{Aut}(\tilde{\mathfrak{t}})|}
$$

$\left(\#\right.$ labels $=N_{D}(D+1)!/ 2$ for general and N_{0} for simplicial triangulations)

Moves in 3D

- 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.

Moves in 3D

- 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.

Moves in 3D

- 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.
- 32-move: select uniform random tetrahedron and one of its edges, check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.

Moves in 3D

- 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.
- 32-move: select uniform random tetrahedron and one of its edges, check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.
- Always valid for general triangulations, provided tetrahedra are distinct. For simplicial triangulations need to check no "double" edges or triangles created.

Moves in 3D

- 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.
- 32-move: select uniform random tetrahedron and one of its edges, check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.
- Always valid for general triangulations, provided tetrahedra are distinct. For simplicial triangulations need to check no "double" edges or triangles created.
- Detailed balance: $\frac{P(a \rightarrow b)}{P(b \rightarrow a)}=\frac{\text { SelectProb }(a \rightarrow b) \text { AcceptProb }(a \rightarrow b)}{\text { SelectProb }(b \rightarrow a)} \operatorname{AcceptProb}(b \rightarrow a)$

Moves in 3D

- 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.
- 32-move: select uniform random tetrahedron and one of its edges, check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.
- Always valid for general triangulations, provided tetrahedra are distinct. For simplicial triangulations need to check no "double" edges or triangles created.
- Detailed balance: $\frac{P(a \rightarrow b)}{P(b \rightarrow a)}=\frac{2 /\left(4 N_{3}^{3}\right)}{3 /\left(6 N_{3}^{)}\right)} \frac{A(a \rightarrow b)}{A(b \rightarrow a)} \stackrel{!}{=} e^{S\left[N_{3}^{\beta}, N_{0}^{2}\right]-S\left[N_{3}^{b}, N_{0}^{b}\right]}$

Moves in 3D

- 14-move: select a uniform tetrahedron, split into 4 tetrahedra.
- 41-move: select a uniform tetrahedron and one of its vertices, check configuration, remove vertex.
- Always valid both for general and simplicial triangulations.

Moves in 3D

- 14-move: select a uniform tetrahedron, split into 4 tetrahedra.
- 41-move: select a uniform tetrahedron and one of its vertices, check configuration, remove vertex.
- Always valid both for general and simplicial triangulations.
- Detailed balance: $\frac{P(a \rightarrow b)}{P(b \rightarrow a)}=\frac{\operatorname{SelectProb}(a \rightarrow b)}{\operatorname{SelectProb}(b \rightarrow a)} \operatorname{AcceptProb}(a \rightarrow b)$

Moves in 3D

- 14-move: select a uniform tetrahedron, split into 4 tetrahedra.
- 41-move: select a uniform tetrahedron and one of its vertices, check configuration, remove vertex.
- Always valid both for general and simplicial triangulations.
- Detailed balance: $\frac{P(a \rightarrow b)}{P(b \rightarrow a)}=\frac{1 /\left(N_{3}^{a}\right)}{4 /\left(4 N_{3}^{b}\right)} \frac{A(a \rightarrow b)}{A(b \rightarrow a)} \stackrel{!}{=} e^{S\left[N_{3}^{a}, N_{0}^{a}\right]-S\left[N_{3}^{b}, N_{0}^{b}\right]}$

Grand canonical?

- The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}(0<p<1)$ satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S\left[N_{3}, N_{0}\right]}$).

Grand canonical?

- The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}(0<p<1)$ satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S\left[N_{3}, N_{0}\right]}$).
- Ergodic, provided we do not restrict N_{3} or N_{0} ! [Pachner, '91]

Grand canonical?

- The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}(0<p<1)$ satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S\left[N_{3}, N_{0}\right]}$).
- Ergodic, provided we do not restrict N_{3} or N_{0} ! [Pachner, '91]
- To ensure ergodicity for $N_{3} \leq n$, must allow intermediate triangulations of size $N_{3} \leq f(n)$.
- Theoretically: $f(n)<e^{c n^{2}}$ [Mijatović,'03]
- In practice: $f(n) \leq n+2$ for all $n \leq 9$ (10^{8} triangulations) [Burton,'11]

Grand canonical?

- The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}(0<p<1)$ satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S\left[N_{3}, N_{0}\right]}$).
- Ergodic, provided we do not restrict N_{3} or N_{0} ! [Pachner, '91]
- To ensure ergodicity for $N_{3} \leq n$, must allow intermediate triangulations of size $N_{3} \leq f(n)$.
- Theoretically: $f(n)<e^{c n^{2}}$ [Mijatović,'03]
- In practice: $f(n) \leq n+2$ for all $n \leq 9\left(10^{8}\right.$ triangulations) [Burton,'11]
- Need to use a grand-canonical ensemble in 3D/4D (contrary to 2D)!
- Why not just

$$
Z=\sum_{\text {triang. } \mathfrak{t}} \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{-S\left[N_{3}, N_{0}\right]} \quad, S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0} ?
$$

- Why not just

$$
Z=\sum_{\text {triang. } \mathfrak{t}} \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{-S\left[N_{3}, N_{0}\right]}=\sum_{N_{3}} Z_{N_{3}} e^{-\kappa_{3} N_{3}}, S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0} \text { ? }
$$

- Typically $Z_{N_{3}}=\sum \frac{1}{|\operatorname{Aut}(t)|} e^{\kappa_{0} N_{0}} \sim f\left(N_{3}\right) e^{c\left(\kappa_{0}\right) \cdot N_{3}}$ as $N_{3} \rightarrow \infty$, $f\left(N_{3}\right) \rightarrow 0$ subexponentially.
- Why not just

$$
Z=\sum_{\text {triang. } \mathfrak{t}} \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{-S\left[N_{3}, N_{0}\right]}=\sum_{N_{3}} Z_{N_{3}} e^{-\kappa_{3} N_{3}}, S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0} ?
$$

- Typically $Z_{N_{3}}=\sum \frac{1}{|\operatorname{Aut}(t)|} e^{\kappa_{0} N_{0}} \sim f\left(N_{3}\right) e^{c\left(\kappa_{0}\right) \cdot N_{3}}$ as $N_{3} \rightarrow \infty$, $f\left(N_{3}\right) \rightarrow 0$ subexponentially.
- $\kappa_{3}<c\left(\kappa_{0}\right): Z\left[\kappa_{3}, \kappa_{0}\right]=\infty$

- Why not just

$$
Z=\sum_{\text {triang. } \mathfrak{t}} \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{-S\left[N_{3}, N_{0}\right]}=\sum_{N_{3}} Z_{N_{3}} e^{-\kappa_{3} N_{3}}, S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0} ?
$$

- Typically $Z_{N_{3}}=\sum \frac{1}{|\operatorname{Aut}(t)|} e^{\kappa_{0} N_{0}} \sim f\left(N_{3}\right) e^{c\left(\kappa_{0}\right) \cdot N_{3}}$ as $N_{3} \rightarrow \infty$, $f\left(N_{3}\right) \rightarrow 0$ subexponentially.
- $\kappa_{3}<c\left(\kappa_{0}\right): Z\left[\kappa_{3}, \kappa_{0}\right]=\infty$
- $\kappa_{3} \geq c\left(\kappa_{0}\right): N_{3}=1$ with positive probability.

- Why not just

$$
Z=\sum_{\text {triang. } \mathfrak{t}} \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{-S\left[N_{3}, N_{0}\right]}=\sum_{N_{3}} Z_{N_{3}} e^{-\kappa_{3} N_{3}}, S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0} ?
$$

- Typically $Z_{N_{3}}=\sum \frac{1}{\mid \operatorname{Aut}(t))} e^{\kappa_{0} N_{0}} \sim f\left(N_{3}\right) e^{c\left(\kappa_{0}\right) \cdot N_{3}}$ as $N_{3} \rightarrow \infty$, $f\left(N_{3}\right) \rightarrow 0$ subexponentially.
- $\kappa_{3}<c\left(\kappa_{0}\right): Z\left[\kappa_{3}, \kappa_{0}\right]=\infty$
- $\kappa_{3} \geq c\left(\kappa_{0}\right): N_{3}=1$ with positive probability.
- If $N_{3}=n$ is desired, use $S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0}+\epsilon\left|N_{3}-n\right|^{1 \text { or } 2}$.

- Why not just

$$
Z=\sum_{\text {triang. } \mathfrak{t}} \frac{1}{|\operatorname{Aut}(t)|} e^{-S\left[N_{3}, N_{0}\right]}=\sum_{N_{3}} Z_{N_{3}} e^{-\kappa_{3} N_{3}}, S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0} ?
$$

- Typically $Z_{N_{3}}=\sum \frac{1}{\mid \operatorname{Aut}(t))} e^{\kappa_{0} N_{0}} \sim f\left(N_{3}\right) e^{c\left(\kappa_{0}\right) \cdot N_{3}}$ as $N_{3} \rightarrow \infty$, $f\left(N_{3}\right) \rightarrow 0$ subexponentially.
- $\kappa_{3}<c\left(\kappa_{0}\right): Z\left[\kappa_{3}, \kappa_{0}\right]=\infty$
- $\kappa_{3} \geq c\left(\kappa_{0}\right): N_{3}=1$ with positive probability.
- If $N_{3}=n$ is desired, use $S\left[N_{3}, N_{0}\right]=\kappa_{3} N_{3}-\kappa_{0} N_{0}+\epsilon\left|N_{3}-n\right|^{1}$ or 2 .
- Rejection sampling of MCMC: effectively simulate $Z_{N_{3}=n}\left[\kappa_{0}\right]=\sum e^{\kappa_{0} N_{0}}$. Need ϵ not too small.
- Need ϵ not too large for ergodicity.

MCMC overview

- Read parameters: desired size n, coupling κ_{0}.
- Initialize configuration: correct topology is sufficient.

- Start performing Monte Carlo moves indefinitely
- Thermalization phase
- Parameter tuning (ϵ, κ_{D}, relative move frequency p)
- Monitor thermalization with suitable observables.
- Measurement phase
- With predetermined frequency attempt measurement.
- If desired, reject configuration if size outside window around n.
- Add measurement data to list or histogram.

Phases

- By examining the moves we can already get an idea what the geometries will look like for κ_{0} very small/large.
- κ_{0} large, maximize N_{0} for fixed N_{3} : many 14-moves \rightarrow tree-like structure.
- κ_{0} small, minimize N_{0} for fixed N_{3} : many 23-moves \rightarrow highly connected

Phases

- By examining the moves we can already get an idea what the geometries will look like for κ_{0} very small/large.
- κ_{0} large, maximize N_{0} for fixed N_{3} : many 14-moves \rightarrow tree-like structure. "Branched polymer phase" $d_{\mathrm{H}}=2, d_{s}=4 / 3$
- κ_{0} small, minimize N_{0} for fixed N_{3} : many 23 -moves \rightarrow highly connected "Crumpled phase" no conclusive scaling ($d_{\mathrm{H}}=d_{s}=\infty$?)

- Indeed these structures are characteristic for the two phases of DT in 3D and 4D. [Boulatov, Krzywicki, Ambjørn, Varsted, Agishtein, Migdal, Jurkiewicz, Renken, Catterall, Kogut, Thorleifsson, Bialas, Burda, Bilke, Thorleifsson, Petersson,...,'90s]

Phase transition

- All is not lost: perhaps enhanced scaling at the phase transition?

Phase transition

- All is not lost: perhaps enhanced scaling at the phase transition?

Phase transition

- All is not lost: perhaps enhanced scaling at the phase transition?
- Not clear from this plot whether transitions is discontinuous (1st order) or continuous (higher order).

Double peak structure

Monte Carlo time

- When κ_{0} is tuned to critical value: MCMC jumps between two meta-stable states.

Double peak structure

Monte Carlo time

- When κ_{0} is tuned to critical value: MCMC jumps between two meta-stable states.
- If double peak in histogram becomes more pronounced as $N_{4} \rightarrow \infty$ then transition is discontinuous.

Double peak structure

Monte Carlo time

histogram

- When κ_{0} is tuned to critical value: MCMC jumps between two meta-stable states.
- If double peak in histogram becomes more pronounced as $N_{4} \rightarrow \infty$ then transition is discontinuous.
- It does. No hope of new scaling at transition.

How to proceed?

- 3D $\rightarrow 4 \mathrm{D}$: Situation is similar, though discontinuity less pronounced.

How to proceed?

- 3D $\rightarrow 4 \mathrm{D}$: Situation is similar, though discontinuity less pronounced.
- Enlarge phase diagram with extra couplings or matter fields.
- Higher curvature terms.
- Non-trivial measure: $e^{-S} \rightarrow e^{-S} \prod_{\sigma_{D-2}}\left|\operatorname{deg}\left(\sigma_{D-2}\right)\right|^{\beta}$.
- Gauge fields, Gaussian fields, Ising models.

How to proceed?

- 3D $\rightarrow 4 \mathrm{D}$: Situation is similar, though discontinuity less pronounced.
- Enlarge phase diagram with extra couplings or matter fields.
- Higher curvature terms.
- Non-trivial measure: $e^{-S} \rightarrow e^{-S} \prod_{\sigma_{D-2}}\left|\operatorname{deg}\left(\sigma_{D-2}\right)\right|^{\beta}$.
- Gauge fields, Gaussian fields, Ising models.
- Change the ensemble of geometries.
- Change topology.
- Different polyhedra as building blocks.
- Introduce foliation: Causal Dynamical Triangulations (CDT).

Causal Dynamical Triangulations in 3D

- Consider a (general or simplicial) 3-Triangulation of topology $S^{1} \times S^{2}$.
- It is causal if it is "foliated" by triangulations of S^{2} and all tetrahedra of two types (31-, 22-simplex).

Causal Dynamical Triangulations in 3D

- Consider a (general or simplicial) 3-Triangulation of topology $S^{1} \times S^{2}$.
- It is causal if it is "foliated" by triangulations of S^{2} and all tetrahedra of two types (31-, 22-simplex).
- Let's adapt our MCMC methods to sample such triangulations with

$$
Z\left[N_{3}, N_{0}, T\right]:=\sum_{\substack{\text { causal } \\ \text { with thangulations } T \text { layers }}} \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{-S\left[N_{3}, N_{0}\right]} .
$$

Adaption to Causal triangulations

- Replace moves
 with a set that preserves the foliation and is ergodic in causal triangulations (with fixed T).

- Update detailed balance conditions.

Adaption to Causal triangulations

- Replace moves
 with a set that preserves the foliation and is ergodic in causal triangulations (with fixed T).

- Update detailed balance conditions.
- Construct by hand an initial configuration with correct topology.

Adaption to Causal triangulations

- Replace moves
 with a set that preserves the foliation and is ergodic in causal triangulations (with fixed T).

- Update detailed balance conditions.
- Construct by hand an initial configuration with correct topology.

Adaption to Causal triangulations

- Replace moves
 with a set that preserves the foliation and is ergodic in causal triangulations (with fixed T).

- Update detailed balance conditions.
- Construct by hand an initial configuration with correct topology.

Phase diagram of CDT in 3D

- For fixed N_{3}
- κ_{0} large, maximize N_{0}, few 22-simplices
- κ_{0} small, minimize N_{0}, many 22-simplices
[Ambjorn, Jurkiewicz, Loll, hep-th/0011276]

Phase diagram of CDT in 3D

- For fixed N_{3}
- κ_{0} large, maximize N_{0}, few 22-simplices
- κ_{0} small, minimize N_{0}, many 22-simplices

Phase diagram of CDT in 3D

- For fixed N_{3}
- κ_{0} large, maximize N_{0}, few 22-simplices Weak correlation between slices; collection of 2d random geometries
- κ_{0} small, minimize N_{0}, many 22 -simplices

Phase diagram of CDT in 3D

- For fixed N_{3}
- κ_{0} large, maximize N_{0}, few 22-simplices Weak correlation between slices; collection of 2d random geometries
- κ_{0} small, minimize N_{0}, many 22-simplices

Strong correlation between slices; condensation!

Phase diagram of CDT in 3D

- For fixed N_{3}
- κ_{0} large, maximize N_{0}, few 22-simplices

Weak correlation between slices; collection of 2d random geometries

- κ_{0} small, minimize N_{0}, many 22-simplices

Strong correlation between slices; condensation!

- Either 1st order phase transition (simplicial triangulations) or no transition (general triangulations).

A closer look at the condensation phase

- As $N_{3} \rightarrow \infty$ the relative fluctuations of $N_{2}\left(t^{\prime}\right)$ w.r.t $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ decrease to 0 .

A closer look at the condensation phase

- As $N_{3} \rightarrow \infty$ the relative fluctuations of $N_{2}\left(t^{\prime}\right)$ w.r.t $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ decrease to 0 .

A closer look at the condensation phase

- As $N_{3} \rightarrow \infty$ the relative fluctuations of $N_{2}\left(t^{\prime}\right)$ w.r.t $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ decrease to 0 .

A closer look at the condensation phase

- As $N_{3} \rightarrow \infty$ the relative fluctuations of $N_{2}\left(t^{\prime}\right)$ w.r.t $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ decrease to 0 .

A closer look at the condensation phase

- As $N_{3} \rightarrow \infty$ the relative fluctuations of $N_{2}\left(t^{\prime}\right)$ w.r.t $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ decrease to 0 .
- $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ accurately matches $a \cdot \cos ^{2}\left(b \cdot t^{\prime}\right)$ (which happens to match the volume profile of S^{3}).

A closer look at the condensation phase

- As $N_{3} \rightarrow \infty$ the relative fluctuations of $N_{2}\left(t^{\prime}\right)$ w.r.t $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ decrease to 0 .
- $\left\langle N_{2}\left(t^{\prime}\right)\right\rangle$ accurately matches $a \cdot \cos ^{2}\left(b \cdot t^{\prime}\right)$ (which happens to match the volume profile of S^{3}).
- Spectral dimension $d_{\mathrm{s}} \approx 3$.

CDT in 4D: the state of the art

- A richer phase diagram in 4D: similar phase C with semi-classical volume profile and $d_{\mathrm{s}} \approx 4$.
[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]

CDT in 4D: the state of the art

- A richer phase diagram in 4D: similar phase C with semi-classical volume profile and $d_{\mathrm{s}} \approx 4$.
- Now also a continuous phase transition (probably $2^{\text {nd }}$ order)
[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]

CDT in 4D: the state of the art

- A richer phase diagram in 4D: similar phase C with semi-classical volume profile and $d_{\mathrm{s}} \approx 4$.
- Now also a continuous phase transition (probably $2^{\text {nd }}$ order)
- Surprisingly another continuous phase transition was recently found.
[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]

Take-home messages

- Simulating random geometry, in particular (Causal) Dynamical Triangulations, is not more difficult than simulating the Ising model.

Take-home messages

- Simulating random geometry, in particular (Causal) Dynamical Triangulations, is not more difficult than simulating the Ising model.
- Continuous phase transitions are essential to model sub-Planckian geometry.

Take-home messages

- Simulating random geometry, in particular (Causal) Dynamical Triangulations, is not more difficult than simulating the Ising model.
- Continuous phase transitions are essential to model sub-Planckian geometry.
- The possession of a semi-classical thermodynamic limit is a highly non-trivial property in the case of (background-independent) random geometries.

