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Outline

I Day 1: 2D random geometry
I Combinatorial representation
I Markov Chain Monte Carlo (MCMC) methods
I Matter coupling
I Observables

I Day 2: Dynamical Triangulations in higher dimensions
I Quantum gravity
I Combinatorial representation
I MCMC methods
I Phase diagram
I Causal Dynamical Triangulations

I Tutorials: numerical analysis of various 2D random geometries
I Measure observables for random geometries (produced by black box)
I Extract critical exponents.
I Experiment with (new?) observables.
I Conclusions will be collected at the end and be discussed.
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Piecewise linear geometry

I D-simplex: {
∑D

i=0 λixi : λi ∈ [0, 1],
∑
λi = 1} ⊂ RD with Euclidean

geometry.

I D-simplices can be glued into larger metric spaces along matching
(D − 1)-simplices.

I Resulting geometry has curvature supported on (D − 2)-simplices.
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Einstein-Hilbert action

I Integrated curvature is naturally expressed in terms of deficit angles
[Regge, ’61] ∫

dDx
√
gR −→

∑
(D−2)−simplices σ

|σ|(2π − θσ)

I If all simplices are taken of equal shape (say, equilateral) then
linearity of Regge action implies that EH (+

∫
dDx
√
gΛ) is a simple

linear combination
κDND − κD−2ND−2.

I Makes sense to include in MCMC at least such two terms in
Boltzmann weight.



Combinatorial representation

I Recall: need next and adjacent to navigate a map, or a polyhedron.

I Generalize: For D-dimensional geometry, (n, a)→ (n, a2, · · · , aD).
ad maps half-edge i to its d-dimensional neighbor ad(i).

I Cells of various dimensions are identified as orbits. In 3D:
(n, a2)→ polyhedra, (n, a3)→ faces, (a2, a3)→ edges,
(n ◦ a2, n ◦ a3)→ vertices.
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Remarks on combinatorics in 3D
I When does a triple of permutations (n, a2, a3) determine a

topological 3-manifold?

I ad ◦ ad = 1, ad(x) 6= x for all x and d .
I Proper gluing: n ◦ a3 ◦ n = a3.
I Polyhedra (orbits under n, a2) should have 3-ball topology (i.e.

boundary S2): Euler formula!
I Neighbourhood of vertices (orbits under n ◦ a2, n ◦ a3) should have

3-ball topology: Euler formula!

I What is the topology of the resulting 3-manifold?

I Unfortunately, no simple combinatorial/algorithmic way to decide!
I Luckily, any two geometries with equal topology are connected by a

finite sequence of local moves!

I Situation very similar in 4D (and higher).
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Simplicial manifolds

I D-triangulation: all D-cells are taken to be D-simplices (i.e.
triangles in 2D, tetrahedra in 3D, 4-simplices in 4D).

I In D-triangulations all dynamical information is stored in aD .

I Amounts to (D + 1)!/2 numbers to store/update per D-simplex.

I Label the vertices of a D-triangulation.

I Simplicial D-triangulation: each edge, face, . . . , D-simplex must be
uniquely characterized by its set of incident vertices.

I Knowing the set {{1, 3, 4, 5}, {2, 3, 4, 5}, {2, 4, 5, 6}, . . .} of
D-simplices, can reproduce the triple (n, a2, a3) up to relabeling (and
orientation).
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Triangulation size?

I What is the “size” of a D-triangulation?

N = # of half-edges (size of n, ad)

N0 = # of vertices

N1 = # of edges

...

ND = # of D-simplices

I Relations: N = ND(D + 1)!/2, 2ND−1 = ND(D + 1),∑d
k=0(−1)kNk = χ (Euler characteristic). In D ≥ 4 more linear

(Dehn-Sommerfield) relations.

I Only bD+1
2 c independent numbers. In 3D and 4D these are usually

taken to be ND and ND−2, or ND and N0.

I Recall the EH action S [ND ,ND−2] = κDND − κD−2ND−2 is exactly
a linear combination of these.

I As we will see: for fixed ND , varying the ratio ND−2/ND has a large
effect on the random geometries!
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Labeling & symmetry

I Recall from yesterday: in 2D for fixed N2 a uniform labeled
triangulation t with N2 triangles is equivalent to an unlabeled
triangulation t̃ with probability proportional to 1/|Aut(̃t)|:

ZN2 =
∑

labeled
triangulations t

1 = (3N2)!
∑

unlabeled
triangulations t̃

1

|Aut(̃t)|

I No longer equivalent if N2 (or ND in dimension D) is allowed to vary.

I Settle upon convention that S [ND ,N0] is action for unlabeled
triangulations:

Z =
∑

labeled
triangulations t

e−S[ND ,N0]

(#labels)!
=

∑
unlabeled

triangulations t̃

e−S[ND ,N0]

|Aut(̃t)|

(#labels = ND(D + 1)!/2 for general and N0 for simplicial
triangulations)



Moves in 3D
I 23-move: select a uniform random triangle, merge incident

tetrahedra, split into 3 tetrahedra.

I 32-move: select uniform random tetrahedron and one of its edges,
check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.

I Always valid for general triangulations, provided tetrahedra are
distinct. For simplicial triangulations need to check no “double”
edges or triangles created.

I Detailed balance: P(a→b)
P(b→a) = SelectProb(a→b)

SelectProb(b→a)
AcceptProb(a→b)
AcceptProb(b→a)
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Moves in 3D

I 14-move: select a uniform tetrahedron, split into 4 tetrahedra.

I 41-move: select a uniform tetrahedron and one of its vertices, check
configuration, remove vertex.

I Always valid both for general and simplicial triangulations.
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Grand canonical?

I The Markov step that attempts 23-, 32-, 14-, 41-move with
probabilities p

2 ,
p
2 ,

1−p
2 , 1−p

2 (0 < p < 1) satisfies detailed balance

(w.r.t. Boltzmann weight e−S[N3,N0]).

I Ergodic, provided we do not restrict N3 or N0! [Pachner, ’91]

I To ensure ergodicity for N3 ≤ n, must allow intermediate
triangulations of size N3 ≤ f (n).

I Theoretically: f (n) < ecn
2

[Mijatović,’03]

I In practice: f (n) ≤ n + 2 for all n ≤ 9 (108 triangulations) [Burton,’11]

I Need to use a grand-canonical ensemble in 3D/4D (contrary to 2D)!
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I In practice: f (n) ≤ n + 2 for all n ≤ 9 (108 triangulations) [Burton,’11]

I Need to use a grand-canonical ensemble in 3D/4D (contrary to 2D)!



Grand canonical?

I The Markov step that attempts 23-, 32-, 14-, 41-move with
probabilities p

2 ,
p
2 ,

1−p
2 , 1−p

2 (0 < p < 1) satisfies detailed balance

(w.r.t. Boltzmann weight e−S[N3,N0]).

I Ergodic, provided we do not restrict N3 or N0! [Pachner, ’91]

I To ensure ergodicity for N3 ≤ n, must allow intermediate
triangulations of size N3 ≤ f (n).

I Theoretically: f (n) < ecn
2

[Mijatović,’03]
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I Why not just

Z =
∑

triang. t

1

|Aut(t)|
e−S[N3,N0]

=
∑
N3

ZN3e
−κ3N3

, S [N3,N0] = κ3N3−κ0N0?

I Typically ZN3 =
∑

1
|Aut(t)|e

κ0N0 ∼ f (N3)ec(κ0)·N3 as N3 →∞,

f (N3)→ 0 subexponentially.

I κ3 < c(κ0): Z [κ3, κ0] =∞
I κ3 ≥ c(κ0): N3 = 1 with positive probability.

I If N3 = n is desired, use S [N3,N0] = κ3N3 − κ0N0 + ε|N3 − n|1 or 2.

I Rejection sampling of MCMC: effectively simulate
ZN3=n[κ0] =

∑
eκ0N0 . Need ε not too small.

I Need ε not too large for ergodicity.
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MCMC overview

I Read parameters: desired size n, coupling κ0.

I Initialize configuration: correct topology is sufficient.

I Start performing Monte Carlo moves indefinitely
I Thermalization phase

I Parameter tuning (ε, κD , relative move frequency p)
I Monitor thermalization with suitable observables.

I Measurement phase
I With predetermined frequency attempt measurement.
I If desired, reject configuration if size outside window around n.
I Add measurement data to list or histogram.



Phases

I By examining the moves we can already get an idea what the
geometries will look like for κ0 very small/large.

I κ0 large, maximize N0 for fixed N3:
many 14-moves → tree-like structure.

“Branched polymer phase”
dH = 2, ds = 4/3

I κ0 small, minimize N0 for fixed N3:
many 23-moves → highly connected

“Crumpled phase”
no conclusive scaling (dH = ds =∞?)

I Indeed these structures are characteristic for the two phases of DT
in 3D and 4D. [Boulatov, Krzywicki, Ambjørn, Varsted, Agishtein, Migdal, Jurkiewicz,

Renken, Catterall, Kogut, Thorleifsson, Bialas, Burda, Bilke, Thorleifsson, Petersson,. . . ,’90s]
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Phase transition

I All is not lost: perhaps enhanced scaling at the phase transition?

I Not clear from this plot whether transitions is discontinuous (1st
order) or continuous (higher order).
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Double peak structure

I When κ0 is tuned to critical value: MCMC jumps between two
meta-stable states.

I If double peak in histogram becomes more pronounced as N4 →∞
then transition is discontinuous.

I It does. No hope of new scaling at transition.
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How to proceed?

I 3D→4D: Situation is similar, though discontinuity less pronounced.

I Enlarge phase diagram with extra couplings or matter fields.
I Higher curvature terms.
I Non-trivial measure: e−S → e−S ∏

σD−2
| deg(σD−2)|β .

I Gauge fields, Gaussian fields, Ising models.

I Change the ensemble of geometries.
I Change topology.
I Different polyhedra as building blocks.
I Introduce foliation: Causal Dynamical Triangulations (CDT).
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Causal Dynamical Triangulations in 3D
I Consider a (general or simplicial) 3-Triangulation of topology

S1 × S2.

I It is causal if it is “foliated” by triangulations of S2 and all
tetrahedra of two types (31-, 22-simplex).

I Let’s adapt our MCMC methods to sample such triangulations with

Z [N3,N0,T ] :=
∑

causal triangulations t
with T layers

1

|Aut(t)|
e−S[N3,N0].
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Adaption to Causal triangulations
I Replace moves with a set that

preserves the foliation and is ergodic in causal triangulations (with
fixed T ).

I Update detailed balance conditions.

I Construct by hand an initial configuration with correct topology.
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Phase diagram of CDT in 3D
I For fixed N3

I κ0 large, maximize N0, few 22-simplices

Weak correlation between slices; collection of 2d random geometries

I κ0 small, minimize N0, many 22-simplices

Strong correlation between slices; condensation!
I Either 1st order phase transition (simplicial triangulations) or no

transition (general triangulations).
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A closer look at the condensation phase

I As N3 →∞ the relative fluctuations of N2(t ′) w.r.t 〈N2(t ′)〉
decrease to 0.

I 〈N2(t ′)〉 accurately matches a · cos2(b · t ′) (which happens to match
the volume profile of S3).

I Spectral dimension ds ≈ 3.
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CDT in 4D: the state of the art
I A richer phase diagram in 4D: similar phase C with semi-classical

volume profile and ds ≈ 4.

I Now also a continuous phase transition (probably 2nd order)
I Surprisingly another continuous phase transition was recently found.
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Take-home messages

I Simulating random geometry, in particular (Causal) Dynamical
Triangulations, is not more difficult than simulating the Ising model.

I Continuous phase transitions are essential to model sub-Planckian
geometry.

I The possession of a semi-classical thermodynamic limit is a highly
non-trivial property in the case of (background-independent) random
geometries.
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