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» Tutorials: numerical analysis of various 2D random geometries
> Measure observables for random geometries (produced by black box)
» Extract critical exponents.
> Experiment with (new?) observables.
» Conclusions will be collected at the end and be discussed.
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Piecewise linear geometry

> D-simplex: {Z?:o Aix; : A € [0,1],3° A = 1} € RP with Euclidean
geometry.

O D

» D-simplices can be glued into larger metric spaces along matching
(D — 1)-simplices.
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» Resulting geometry has curvature supported on (D — 2)-simplices.




Einstein-Hilbert action

> Integrated curvature is naturally expressed in terms of deficit angles
[Regge, '61]
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(D—2)—simplices o

» If all simplices are taken of equal shape (say, equilateral) then
linearity of Regge action implies that EH (+ [ dPx,/gA) is a simple
linear combination

kpNp — kp—oNp_»s.

» Makes sense to include in MCMC at least such two terms in
Boltzmann weight.
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Combinatorial representation

» Recall: need next and adjacent to navigate a map, or a polyhedron.

» Generalize: For D-dimensional geometry, (n,a) — (n,az,--- , ap).
ag maps half-edge i to its d-dimensional neighbor a4(/).

» Cells of various dimensions are identified as orbits. In 3D:
(n,a2) — polyhedra, (n,a3) — faces, (a2, a3) — edges,
(noaz,noasz) — vertices.




Remarks on combinatorics in 3D

» When does a triple of permutations (n, a, a3) determine a
topological 3-manifold?




Remarks on combinatorics in 3D

» When does a triple of permutations (n, a, a3) determine a
topological 3-manifold?

>

>

>

agoaqg =1, ag(x) # x for all x and d.

Proper gluing: no azon = as.

Polyhedra (orbits under n, a;) should have 3-ball topology (i.e.
boundary S?): Euler formulal

Neighbourhood of vertices (orbits under no as, n o as) should have
3-ball topology: Euler formula!




Remarks on combinatorics in 3D

» When does a triple of permutations (n, a, a3) determine a
topological 3-manifold?

> ag0a4 =1, ag(x) # x for all x and d.

> Proper gluing: noaszon= as.

> Polyhedra (orbits under n, a;) should have 3-ball topology (i.e.
boundary S?): Euler formulal

> Neighbourhood of vertices (orbits under no a>, no az) should have
3-ball topology: Euler formula!

» What is the topology of the resulting 3-manifold?




Remarks on combinatorics in 3D

» When does a triple of permutations (n, a, a3) determine a
topological 3-manifold?
> ag0a4 =1, ag(x) # x for all x and d.
> Proper gluing: noaszon= as.
> Polyhedra (orbits under n, a;) should have 3-ball topology (i.e.
boundary S?): Euler formulal
> Neighbourhood of vertices (orbits under no a>, no az) should have
3-ball topology: Euler formula!
» What is the topology of the resulting 3-manifold?
» Unfortunately, no simple combinatorial/algorithmic way to decide!
> Luckily, any two geometries with equal topology are connected by a
finite sequence of local moves!

» Situation very similar in 4D (and higher).
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Simplicial manifolds

>

vV v v v

D-triangulation: all D-cells are taken to be D-simplices (i.e.
triangles in 2D, tetrahedra in 3D, 4-simplices in 4D).

In D-triangulations all dynamical information is stored in ap.
Amounts to (D + 1)!/2 numbers to store/update per D-simplex.
Label the vertices of a D-triangulation.

Simplicial D-triangulation: each edge, face, ..., D-simplex must be
uniquely characterized by its set of incident vertices.

Knowing the set {{1,3,4,5},{2,3,4,5},{2,4,5,6},...} of
D-simplices, can reproduce the triple (n, az, a3) up to relabeling (and
orientation).
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Triangulation size?
» What is the “size” of a D-triangulation?
N = # of half-edges (size of n, ay)

No = # of vertices
N; = # of edges

Np = # of D-simplices

» Relations: N = ND(D + 1)'/2, 2Np_1 = ND(D + 1),
ZZZO(—I)"N;( = x (Euler characteristic). In D > 4 more linear
(Dehn-Sommerfield) relations.

» Only L%J independent numbers. In 3D and 4D these are usually
taken to be Np and Np_s, or Np and Nj.

» Recall the EH action S[Np, Np_»] = kpNp — kp_2Np_5 is exactly
a linear combination of these.

> As we will see: for fixed Np, varying the ratio Np_»/Np has a large
effect on the random geometries!



Labeling & symmetry

» Recall from yesterday: in 2D for fixed N, a uniform labeled
triangulation t with N, triangles is equivalent to an unlabeled
triangulation T with probability proportional to 1/|Aut(%)|:

1
Iy, = Z 1=(3N,)! Z TAw()]

. labeled unlabeled
triangulations t triangulations t

» No longer equivalent if N, (or Np in dimension D) is allowed to vary.

> Settle upon convention that S[Np, No] is action for unlabeled
triangulations:

S e—SINp,No] e—S[No,No]
o Z labels)! Z t
. labeled (# ) unlabeled |AUt(t)|
triangulations t triangulations t

(#labels = Np(D + 1)!/2 for general and N for simplicial
triangulations)
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> 32-move: select uniform random tetrahedron and one of its edges,
check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.

» Always valid for general triangulations, provided tetrahedra are
distinct. For simplicial triangulations need to check no “double”
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Moves in 3D

» 14-move: select a uniform tetrahedron, split into 4 tetrahedra.

» 41-move: select a uniform tetrahedron and one of its vertices, check
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» Always valid both for general and simplicial triangulations.
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Moves in 3D

» 14-move: select a uniform tetrahedron, split into 4 tetrahedra.
» 41-move: select a uniform tetrahedron and one of its vertices, check
configuration, remove vertex.

» Always valid both for general and simplicial triangulations.

. _Pabil/(Na)Aablsa’a_s b np
» Detailed balance: Pgb:ag = 4/(4@) AEb:ag = SIN3,Ng1— SN, Ng]

b Np = Nf +3
— Np = Ng+1
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» The Markov step that attempts 23-, 32-, 14-, 41-move with
probabilities 2,2, 152 12P (0 < p < 1) satisfies detailed balance

202772 72
(w.r.t. Boltzmann weight e—5[Ns:Nol),

» Ergodic, provided we do not restrict N3 or Ny! [Pachner, '91]
» To ensure ergodicity for N3 < n, must allow intermediate
triangulations of size N3 < f(n).
> Theoretically: f(n) < e [Mijatovié, 03]
> In practice: f(n) < n+2 for all n <9 (10° triangulations) [Burton,'11]



Grand

canonical?

The Markov step that attempts 23-, 32-, 14-, 41-move with
probabilities 2,2, 152 12P (0 < p < 1) satisfies detailed balance

27202 2
(w.r.t. Boltzmann weight e—5[Ns:Nol),

» Ergodic, provided we do not restrict N3 or Ny! [Pachner, '91]

» To ensure ergodicity for N3 < n, must allow intermediate

triangulations of size N3 < f(n).

> Theoretically: f(n) < e [Mijatovié, 03]
> In practice: f(n) < n+2 for all n <9 (10° triangulations) [Burton,'11]

Need to use a grand-canonical ensemble in 3D/4D (contrary to 2D)!
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» Why not just

1
_ 2: = —S[NsNo] E :z =35 GTNL Nol = kaNa—koNy?
/7 = | ut(t)|e N; € ) [ 3 0] KR3IN3—HKo/\Vg

triang. t N3

» Typically Zy, = > meﬁo’\’o ~ f(N3)ectro) M a5 Ny — oo,
f(N3) — 0 subexponentially.
> k3 < c(Ko): Z[K3, ko] = 00
> k3 > c(ko): N3 =1 with positive probability.
» If N3 = n is desired, use 5[N3, No] = k3N3 — koNy + 6|N3 — n|1 or2,
> Rejection sampling of MCMC: effectively simulate
Zny=n[ko] = 3 €™M Need € not too small.
> Need € not too large for ergodicity.

N3 distribution

K3 > c(Ko)

r3 < (7(%1',())

‘NB



MCMC overview

» Read parameters: desired size n, coupling kg.

» Initialize configuration: correct topology is sufficient. @

» Start performing Monte Carlo moves indefinitely

» Thermalization phase
> Parameter tuning (e, kp, relative move frequency p)
> Monitor thermalization with suitable observables.

> Measurement phase
> With predetermined frequency attempt measurement.
> If desired, reject configuration if size outside window around n.
> Add measurement data to list or histogram.



Phases

» By examining the moves we can already get an idea what the
geometries will look like for ko very small/large.

> ro large, maximize Ny for fixed Ns:
many 14-moves — tree-like structure.

> ko small, minimize Ny for fixed N3:
many 23-moves — highly connected

14
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Phases

» By examining the moves we can already get an idea what the
geometries will look like for ko very small/large.

> ko large, maximize Ny for fixed Ns: Y s
many 14-moves — tree-like structure. “\;5" ¥ fé
“Branched polymer phase” e ;L:&
di =2, de = 4/3 %ﬁfj {5

> ko small, minimize Np for fixed Ns: A
many 23-moves — highly connected =

“Crumpled phase”
no conclusive scaling (du = ds = 007?)

/i
> Indeed these structures are characteristic for the two phases of DT
in 3D and 4D. [Boulatov, Krzywicki, Ambjgrn, Varsted, Agishtein, Migdal, Jurkiewicz,
Renken, Catterall, Kogut, Thorleifsson, Bialas, Burda, Bilke, Thorleifsson, Petersson,. .. ,’905]

23
14
7
~41 32



Phase transition
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Phase transition

(No) /N3

V(NG) — (No)?
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» All is not lost: perhaps enhanced scaling at the phase transition?

» Not clear from this plot whether transitions is discontinuous (1st
order) or continuous (higher order).
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» When kg is tuned to critical value: MCMC jumps between two
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» When kg is tuned to critical value: MCMC jumps between two
meta-stable states.

» |If double peak in histogram becomes more pronounced as Nj — oo

then transition is discontinuous.



Double peak structure

Maximal vertex degree

Monte Carlo time histogram

Nz = 2k N3 = 5k N3 — 10k N3 = 20k

» When kg is tuned to critical value: MCMC jumps between two
meta-stable states.

» |If double peak in histogram becomes more pronounced as Nj — oo
then transition is discontinuous.

» It does. No hope of new scaling at transition. -

= =
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» 3D—4D: Situation is similar, though discontinuity less pronounced.
» Enlarge phase diagram with extra couplings or matter fields.

> Higher curvature terms.
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How to proceed?

» 3D—4D: Situation is similar, though discontinuity less pronounced.
» Enlarge phase diagram with extra couplings or matter fields.

> Higher curvature terms.

» Non-trivial measure: e™> — e~° 1L, | deg(op—2)|”.

> Gauge fields, Gaussian fields, Ising models.
» Change the ensemble of geometries.

> Change topology.

» Different polyhedra as building blocks.

> Introduce foliation: Causal Dynamical Triangulations (CDT).
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» It is causal if it is “foliated” by triangulations of S? and all
tetrahedra of two types (31-, 22-simplex).




Causal Dynamical Triangulations in 3D
» Consider a (general or simplicial) 3-Triangulation of topology
St x 52,
» It is causal if it is “foliated” by triangulations of S? and all
tetrahedra of two types (31-, 22-simplex).
> Let's adapt our MCMC methods to sample such triangulations with

_ L s
Z[Ns, No, T] := Z me [Ns, Vo]

causal triangulations t
with T layers
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» Replace moves @@W with a set that
fixed T).

preserves the foliation and is ergodic in causal triangulations (with

AR

» Update detailed balance conditions.

» Construct by hand an initial configuration with correct topology.




Phase diagram of CDT in 3D
» For fixed N3
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> Ko small, minimize Ny, many 22-simplices

[Ambjorn, Jurkiewicz, Loll, hep-th/0011276]
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Phase diagram of CDT in 3D
» For fixed N3

> Ko large, maximize Ny, few 22-simplices
Weak correlation between slices; collection of 2d random geometries
> Ko small, minimize Ny, many 22-simplices
Strong correlation between slices; condensation!
» Either 1st order phase transition (simplicial triangulations) or no
transition (general triangulations).

T=32, Ny=16.000 and ky=6.7
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» As N3 — oo the relative fluctuations of Ny(t') w.r.t (Ny(t'))
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» As N3 — oo the relative fluctuations of Ny(t') w.r.t (Ny(t'))
decrease to 0.
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A closer look at the condensation phase

» As N3 — oo the relative fluctuations of No(t') w.r.t (Na(t'))
decrease to 0.

» (Ny(t')) accurately matches a - cos?(b - t’) (which happens to match
the volume profile of S3).
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A closer look at the condensation phase

» As N3 — oo the relative fluctuations of No(t') w.r.t (Na(t'))
decrease to 0.

» (Ny(t')) accurately matches a - cos?(b - t’) (which happens to match
the volume profile of S3).

» Spectral dimension dy = 3.
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CDT in 4D: the state of the art

> A richer phase diagram in 4D: similar phase C with semi-classical
volume profile and ds =~ 4.

[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]
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CDT in 4D: the state of the art

> A richer phase diagram in 4D: similar phase C with semi-classical

volume profile and ds =~ 4.
» Now also a continuous phase transition (probably 2" order)

[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]

9
06| 2,
o
>
£
04 | c
S
< ot A
©
0.2t ‘ “
0 ,
T ';Quadruple point
-0.2
4 5




CDT in 4D: the state of the art

> A richer phase diagram in 4D: similar phase C with semi-classical

volume profile and ds =~ 4.
» Now also a continuous phase transition (probably 2" order)

» Surprisingly another continuous phase transition was recently found.

[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]
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» Simulating random geometry, in particular (Causal) Dynamical
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Take-home messages

» Simulating random geometry, in particular (Causal) Dynamical
Triangulations, is not more difficult than simulating the Ising model.

» Continuous phase transitions are essential to model sub-Planckian
geometry.

» The possession of a semi-classical thermodynamic limit is a highly
non-trivial property in the case of (background-independent) random
geometries.



