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Outline

I Day 1: 2D random geometry
I Combinatorial representation
I Markov Chain Monte Carlo (MCMC) methods
I Matter coupling
I Observables

I Day 2: Dynamical Triangulations in higher dimensions
I Quantum gravity
I Combinatorial representation
I MCMC methods
I Phase diagram
I Causal Dynamical Triangulations

I Tutorials: numerical analysis of various 2D random geometries
I Measure observables for random geometries (produced by black box)
I Extract critical exponents.
I Experiment with (new?) observables.
I Conclusions will be collected at the end and be discussed.
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Geometry from polygons

I To change a discrete geometry, one may change . . .
I . . . shape of the polygons, (“Regge calculus”)
I . . . or the connectivity. (“Dynamical triangulation”)

I Fix once and for all the geometry of each polygon of degree k to be
that of the regular k-gon in Euclidean space with sides of length 1.

I Then can represent geometry equivalently by
I a “gluing prescription” on a collection of polygons.
I a “map”: a proper embedding of a graph in a surface;
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Combinatorial description of a map
I Navigate map using “next” and

“adjacent”.

I These define permutations on
the half-edge labels, 1 · · · 28:

n =
(

1 2 3 4 5 ··· 28
7 12 6 9 4 ··· 20

)
a =

(
1 2 3 4 5 ··· 28

27 6 8 15 13 ··· 24

)
I Cycles of n represent faces:

n = (1 7 5 3 6)(4 9 8) · · ·

I Cycles of a represent edges:

a = (1 27)(2 6)(3 8)(4 15)(5 13) · · ·

I Cycles of n ◦ a represent vertices:

n ◦ a = (1 2)(3 4 16 13)(5 10) · · ·
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I Any pair (n, a) of permutations on [2N] := {1, 2, . . . , 2N} with
a ◦ a = 1 and a(x) 6= x determines a (labeled) map with N edges,
hence a piecewise flat geometry on an (oriented!) surface.

I Connected iff n, a act transitively.

I Topology? Euler’s formula for the genus g = g(n, a):

2− 2g = V − E + F = #Cyc(n ◦ a)−#Cyc(a) + #Cyc(n)

I The set TN of labeled triangulations of S2 with N edges can be
described combinatorially by

TN ≡ {(n, a) : transitive, g(n, a) = 0, all cycles of n of length 3}.

I The set QN of labeled quadrangulations of S2 with N edges can be
described combinatorially by

QN ≡ {(n, a) : transitive, g(n, a) = 0, all cycles of n of length 4},

etc.

I In particular, |TN |, |QN | < ((2N)!)2 <∞.
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Random discrete geometries

I The uniform random labeled triangulation of S2 with N edges is an
element of TN chosen with probability 1/|TN | each.

N = 60

I In statistical physics terminology: this is a canonical ensemble with
partition function

ZN =
∑
m∈TN

1 = |TN |

I An observable is a function O : TN → R. It has expectation value

〈O〉N =
1

ZN

∑
m∈TN

O(m).

I How to sample from this ensemble? And compute 〈O〉N?
I The analytic way: combinatorial algorithms; direct random

generation.
I Markov Chain Monte Carlo methods.
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A Markov chain on triangulations

I To obtain a Markov process converging to the uniform distribution
on TN (from any starting point) it suffices to select an update
algorithm that. . .

I preserves topology and size of the map;
I satisfies Detailed balance: P(a → b) = P(b → a);
I and Ergodicity: any state reachable from any other;
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A Markov chain on triangulations

I Select a uniform random edge.
I Flip it: Delete edge and draw the other diagonal of the resulting

quadrangle.
I In terms of (n,a): n′ = n, a′ =

(2 9 5)(3 7 8) ◦ a

.
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A Markov chain on triangulations

I Detailed balance? Ergodic? No. No.

I How about first flip then randomly permute labels? Yes. Yes.
[Wagner, ’36]

I In practice we don’t permute. Why is that OK? Because flipping
and permuting commute, and we may require observables
O : TN → R to be invariant under label permutation.
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Comment on labeling and symmetry
I Clearly labeling is useful when representing geometry in the

computer.

I Another reason: it kills all possible symmetries, which is a good
thing!

I Let’s look at unlabeled triangulations T̃N = Tn/ ∼, i.e. the set of
equivalence classes of Tn under relabeling ∼.

I Sampling uniformly from T̃N is not the same as sampling Tn and
forgetting labels:

ZN =
∑
m∈TN

1 =
∑

[m]∈T̃N

∣∣[m]
∣∣ =

∑
[m]∈T̃N

(2N)!

|Aut(m)|
.

I From the flip move point of view:
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Video of the Markov process on a torus

https://www.youtube.com/watch?v=c3NdgSIe030

https://www.youtube.com/watch?v=c3NdgSIe030


What to expect?

I Interested in critical phenomena of the system: size N →∞, and
large-range correlation.

I Ising model on regular lattice: only occurs at phase transition. Need
to tune parameters.

I In 2D random geometry: criticality is automatic when N →∞.

N = 2000:

I The large-scale properties are universal as N →∞: independent of
precise ensemble of maps used.

I To determine critical exponents of this universality class: need a
family On of observables, with n related to the scale at which the
system is probed. Measure 〈On〉N and analyze N, n→∞ limit.
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N = 5000:

I The large-scale properties are universal as N →∞: independent of
precise ensemble of maps used.

I To determine critical exponents of this universality class: need a
family On of observables, with n related to the scale at which the
system is probed. Measure 〈On〉N and analyze N, n→∞ limit.
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N = 10000:

I The large-scale properties are universal as N →∞: independent of
precise ensemble of maps used.

I To determine critical exponents of this universality class: need a
family On of observables, with n related to the scale at which the
system is probed. Measure 〈On〉N and analyze N, n→∞ limit.
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Matter coupling

I Could introduce a non-trivial action S [m] (or energy βE [m])

ZN =
∑
m∈TN

1 7→ ZN =
∑
m∈TN

e−S[m].

Introduce acceptance probability in MCMC to ensure detailed
balance.

I However, no local action will change universality class (“phase
diagram of pure gravity in 2D is trivial”).

I More interesting to couple geometry to matter, e.g. Ising model.

ZN =
∑
m∈TN

∑
matter config. φ on m

e−S[m,φ]

I If the matter is tuned to criticality, the critical exponents of the
geometry are affected!

I Widely believed there is a 1-parameter family of universality classes
of 2d random geometry, parametrized by total central charge c of
coupled matter fields. (no matter: c = 0; Ising: c = 1/2)



Example: random triangulations + Ising model

ZN,Ising =
∑
m∈TN

∑
{si}

eβJ
∑

〈ij〉 si sj

I For MCMC simulation: supplement triangle flip moves with standard
Ising update moves (single-spin-flips, Wolff, . . . , cf. Barkema’s lectures)

I Introduce Metropolis acceptance probabilities for triangle flip to
ensure detailed balance.
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Observables: geodesic distances

I Various notions of distance: Riemmannian, Graph distance, Dual
graph distance.

I In random geometry and large-distance limit: all identical up to
overall factor. (Proven for triangulations [Curien, Le Gall, ’15])

I Graph distances are easily determined using “breadth-first search”.
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Observables: geodesic distances (continued)
I How to turn distance into (label-invariant) observable O : TN → R?

I Geodesic n-point functions: given f : Rn(n−1)/2 → R,

Of (m) :=
1

|m|n
∑

x1,...,xn

f (d(x1, x2), d(x1, x3), d(x2, x3), . . .)

is a well-defined observable.

I For n = 2 and f = fr := δ·,r for r = 1, 2, . . ., ρN(r) := 〈Ofr 〉 is
probability that two random points have distance r .

I dH is Hausdorff dimension (which equals d in flat Rd).
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Observables: geodesic distances (continued)

I Instead of taking N →∞ and then r →∞, it is usually better to
use finite-size scaling methods: one expects

N1/dHρN(N1/dHx) to converge as N →∞ for any fixed x ∈ R.

I Equivalently, we expect the distribution of the distance between two
random points to converge as N →∞ provided we take edge
lengths ∼ N−1/dH .

I Estimate dH by “collapsing curves”:



Observables: spectral dimension
I Consider a simple random walk on the faces of m, started at face x .

I Return probability px(t;m) is probability that it is back at x after t
steps.

I Averaging over all starting points we get a family of observables

p(t;m) :=
1

|m|
∑
x

px(t;m).

I One expects 〈p(t;m)〉N → p∞(t) as N →∞, and p∞(t) ∼ t−ds/2

as t →∞.
I ds is the (annealed) spectral dimension (equal to d on Zd).
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Observables: spectral dimension (continued)
I How to measure px(t;m), p(t;m), 〈p(t;m)〉?

I Perform random walk with random starting point x (no need to
average over all starting points!).

I Linear algebra.

I Define N × N (normalized) adjacency matrix A by

Aij := P(j → i) =
#edges shared by face i and j

degree of face j

Then px(t;m) = (At)xx and p(t;m) =
1

N
Tr(At) =

1

N

N∑
i=1

λti ,

where (λ1, . . . , λN) is the spectrum of A (hence spectral dimension).

I For large t (and not too large
N) it can be advantageous to
use numerical linear algebra to
determine spectrum first.

.
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Counting/susceptibility exponent
I Typically expect (unlabeled) partition function to grow like

Z̃n =
ZN

(2N)!
∼ Nγs−3ecN as N →∞

I How to determine exponent γs?

I Find minimal neck: closed path of minimal length (3 for triangulations, 2

for quadrangulations) enclosing more than one face.
I Random edge is part of minimal neck enclosing n edges with

probability ≈ nZ̃n · (N − n)Z̃N−n

NZ̃N

= (n · (1− n/N))γs−2

I Histogram of n and plot against n · (1− n/N).
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Conjectural relation dH, ds, γs to central charge c

c ∈ (−∞, 1] c > 1

γs =
c − 1−

√
(c − 1)(c − 25)

12
γs =

1

2

dH = 2

√
25− c +

√
49− c√

25− c +
√

1− c
dH = 2

ds = 2 ds =
4

3



A zoo of observables



Plan for the tutorial sessions

I Team up (in groups 1, 2, 3 ).

I Get the program randgeom to work on your computer:

http://www.nbi.dk/~budd/randgeom/

I Use the provided Mathematica notebook to get a feel for the
random geometries produced by the various models (A, B, C, D).

I Gather data for (at least) one of the observables, and determine
estimates for the corresponding critical exponent (dH, ds or γs) for
each of the models.

I Be creative: try to think of a different observable, perform data
analysis.

I Towards the end of the 2nd session: send me a brief summary of
your results (nice plots?). At the end I will discuss the models and
the data, and compare the latter to what we know.

(All models correspond to a different value of the central charge c. For some models and exponents
analytic results are available. One of the models has not been numerically investigated before!)

http://www.nbi.dk/~budd/randgeom/
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