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» Tutorials: numerical analysis of various 2D random geometries
> Measure observables for random geometries (produced by black box)
» Extract critical exponents.
> Experiment with (new?) observables.
» Conclusions will be collected at the end and be discussed.
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Geometry from polygons

» To change a discrete geometry, one may change . ..

> ...shape of the polygons, (“Regge calculus”)
> ...or the connectivity. ("Dynamical triangulation”)

» Fix once and for all the geometry of each polygon of degree k to be
that of the regular k-gon in Euclidean space with sides of length 1.

» Then can represent geometry equivalently by

> a “gluing prescription” on a collection of polygons.
> a “map”: a proper embedding of a graph in a surface;

25 ()
NPy,

gluing prescription map
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Combinatorial description of a map
» Navigate map using “next” and
“adjacent”.

» These define permutations on
the half-edge labels, 1---28:

n= (33385 %)
a—(217%§145153. %ﬁ)

» Cycles of n represent faces:

n=(17536)(498)---

> Cycles of a represent edges:
a=(127)(26)(38)(415)(513) - - -

» Cycles of no a represent vertices:

noa=(12)(341613)(510)- --
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Any pair (n, a) of permutations on [2N] := {1,2,...,2N} with
aoa=1 and a(x) # x determines a (labeled) map with N edges,
hence a piecewise flat geometry on an (oriented!) surface.

Connected iff n, a act transitively.

Topology? Euler's formula for the genus g = g(n, a):
2—2g=V — E+ F =#Cyc(no a) — #Cyc(a) + #Cyc(n)

The set Ty of labeled triangulations of S? with N edges can be
described combinatorially by

Tn = {(n, a) : transitive, g(n, a) = 0, all cycles of n of length 3}.

The set Qu of labeled quadrangulations of S? with N edges can be
described combinatorially by

On = {(n, a) : transitive, g(n, a) = 0, all cycles of n of length 4},

etc.
In particular, |Tn|, [Qn| < ((2N)!)? < oco.
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Random discrete geometries

>

The uniform random labeled triangulation of S? with N edges is an
element of Ty chosen with probability 1/|7n| each.

In statistical physics terminology: this is a canonical ensemble with

partition function
Zn= 3 1=ITul
meTy

An observable is a function O : Ty — R. It has expectation value

©On=- 3 Ofm).

meTy

How to sample from this ensemble? And compute (O)y?
» The analytic way: combinatorial algorithms; direct random
generation.
» Markov Chain Monte Carlo methods.
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A Markov chain on triangulations

> To obtain a Markov process converging to the uniform distribution
on Ty (from any starting point) it suffices to select an update
algorithm that. ..
> preserves topology and size of the map;
> satisfies Detailed balance: P(a — b) = P(b — a);
» and Ergodicity: any state reachable from any other;
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A Markov chain on triangulations

» Select a uniform random edge.

» Flip it: Delete edge and draw the other diagonal of the resulting
quadrangle.

> In terms of (n,a): " =n, a/ =(295)(378)oa
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A Markov chain on triangulations
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> Detailed balance? Ergodic? No. No.
> How about first flip then randomly permute labels? Yes. Yes.
[Wagner, '36]

> In practice we don't permute. Why is that OK? Because flipping
and permuting commute, and we may require observables
O : Ty — R to be invariant under label permutation.
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Comment on labeling and symmetry

>

Clearly labeling is useful when representing geometry in the
computer.

Another reason: it kills all possible symmetries, which is a good
thing!

Let’s look at unlabeled triangulations Tn = Tn/ ~, i.e. the set of
equivalence classes of T, under relabeling ~.

Sampling uniformly from 7Ty is not the same as sampling 7, and
forgetting labels:

2N)!
-3 1= Y fmll = X A

meTy [m]leTn [m]eTw

From the flip move point of view:




Video of the Markov process on a torus

TPare grawty
: LLDD

https://www.youtube.com/watch?v=c3NdgSIe030
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What to expect?

> Interested in critical phenomena of the system: size N — oo, and
large-range correlation.

> Ising model on regular lattice: only occurs at phase transition. Need
to tune parameters.

» In 2D random geometry: criticality is automatic when N — oo.

N = 20000:
> The large-scale properties are universal as N — oo: independent of
precise ensemble of maps used.
» To determine critical exponents of this universality class: need a

family O, of observables, with n related to the scale at which the
system is probed. Measure (O,)n and analyze N, n — oo limit.



Matter coupling

» Could introduce a non-trivial action S[m] (or energy SE[m])

Iy = Z 1 = Zy= Z eis[m].

meTy meTy

Introduce acceptance probability in MCMC to ensure detailed
balance.

» However, no local action will change universality class ( “phase
diagram of pure gravity in 2D is trivial").

» More interesting to couple geometry to matter, e.g. Ising model.

Zv=3" ) o~ SIm.0]

meETy matter config. ¢ on m

> If the matter is tuned to criticality, the critical exponents of the
geometry are affected!

> Widely believed there is a 1-parameter family of universality classes
of 2d random geometry, parametrized by total central charge ¢ of
coupled matter fields. (no matter: ¢ = 0; Ising: ¢ = 1/2)
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Example: random triangulations + Ising model

acceptance

probability

J oy SiSj
ZN,Ising: E § eﬁ Z<U> ™

m€77v {S,'}

» For MCMC simulation: supplement triangle flip moves with standard
Ising update moves (single—spin—ﬂips, Wolff, ..., cf. Barkema's Iectures)

» Introduce Metropolis acceptance probabilities for triangle flip to
ensure detailed balance.

u]
o)
I
i
it
N
»
?
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Observables: geodesic distances (continued)

» How to turn distance into (label-invariant) observable O : Ty — R?
» Geodesic n-point functions: given f : R"("~1/2 4 R,

Or(m) ::# S F(dxa,x0), d(x, %), 0, ), )

is a well-defined observable.
» Forn=2and f=f:=6.,forr=1,2,..., pn(r) :=(Of) is
probability that two random points have distance r.
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Observables: geodesic distances (continued)

» How to turn distance into (label-invariant) observable O : Ty — R?
» Geodesic n-point functions: given f : R"("=1)/2 4 R,
1
Of(m) := Tl Z f(d(x1, %), d(x1,x3), d(x2, x3), ...)
X1y.ee3Xn
is a well-defined observable.
» Forn=2and f=f,:=06.,forr=1,2,..., pn(r) :=(O¢) is
probability that two random points have distance r.
» dy is Hausdorff dimension (which equals d in flat R?).
N-pn(r)
= I:NC'TdH_lasr—M)o
b N7 v =800
80f Ill
oo} /400
or 200
20l mu\\
0 . - r

0 5 10 15 20



Observables: geodesic distances (continued)

> Instead of taking N — oo and then r — oo, it is usually better to
use finite-size scaling methods: one expects

N9 55 (NY %) to converge as N — oo for any fixed x € R.

» Equivalently, we expect the distribution of the distance between two
random points to converge as N — oo provided we take edge
lengths ~ N—1/dn

» Estimate dy by “collapsing curves”:

Nl/de(Nl/dl.) 014

/\\

/ . 0.08
N\

T ) T ) xr




Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.

> Return probability p.(t; m) is probability that it is back at x after t
steps.



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.

> Return probability p.(t; m) is probability that it is back at x after t
steps.

> Averaging over all starting points we get a family of observables

plEim) = 3 pu(tim).

1 10 100 1000 104 10°



Observables: spectral dimension

» Consider a simple random walk on the faces of m, started at face x.

> Return probability p.(t; m) is probability that it is back at x after t
steps.

> Averaging over all starting points we get a family of observables
1
p(t;m) = T pr(t;m).
X

> One expects (p(t;m))y — poo(t) as N — 00, and pao(t) ~ t~%/2
as t — o0.

> d is the (annealed) spectral dimension (equal to d on Z).

1 ()N

Poo(t) -
~ o p—de/2

1 10 100 1000 104 10°



Observables: spectral dimension (continued)

» How to measure p,(t;m), p(t;m), (p(t;m))?
> Perform random walk with random starting point x (no need to
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> Perform random walk with random starting point x (no need to
average over all starting points!).
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» How to measure p,(t;m), p(t;m), (p(t;m))?
> Perform random walk with random starting point x (no need to
average over all starting points!).
> Linear algebra.
> Define N x N (normalized) adjacency matrix A by

Ay =P = i) = #edges shared by face / and j

degree of face j

N
1 1
Then pe(t;m) = (A" and p(t;m) = N’I‘r(At) ol Zx\f,
i=1

where ()\17 RN )\N) is the spectrum of A (hence spectral dimension).
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Observables: spectral dimension (continued)

» How to measure p,(t;m), p(t;m), (p(t;m))?
> Perform random walk with random starting point x (no need to
average over all starting points!).
> Linear algebra.
> Define N x N (normalized) adjacency matrix A by

d hared by face i and j
A =P = i) = #edges shared by ace./ and j
degree of face j

N
1 1
Then pe(t;m) = (A" and p(t;m) = N’I‘r(At) ol Zx\f,
i=1

where ()\17 RN )\N) is the spectrum of A (hence spectral dimension).
|Ad] N =200
10—
» For large t (and not too large ~—
. 0.8 ~—.
N) it can be advantageous to ~,
. . H-—
use numerical linear algebra to  °°f pectral density e
determine spectrum first. 0.4} close to 1 determines  ™~_
spectral dimension ~_
0.2 !
i

50 100 150 200
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Counting/susceptibility exponent
» Typically expect (unlabeled) partition function to grow like
s Zy
T (2N)!
How to determine exponent 747
Find minimal neck: closed path of minimal length (3 for triangulations, 2
for quadrangulations) enclosing more than one face.
Random edge is part of minimal neck enclosing n edges with
nZ, - (N — n)ZN_,,
NZy
» Histogram of n and plot against n- (1 — n/N).

%3N 35 N = o

vy

v

= (n- (1~ n/N))*?

probability ~




Conjectural relation dy, ds, 75 to central charge ¢

c € (—o0,1] c>1
_c—1—y/(c—1)(c—25) 1
VYs = 12 ’YS_E
V25 —c+ 49— ¢
H V25 —c++v1—-c 1
4
dS:2 ds:§
5,
. R g
I
ds |
I
5 -4 -3 -2 - % 2 3 C




A zoo of observables

Circle pack embedding

S i\ 2 T o
Tutte's harmonic embedding

Percolation properties



Plan for the tutorial sessions

v

Team up (in groups 1, 2, 3).

v

Get the program randgeom to work on your computer:
http://www.nbi.dk/~budd/randgeom/

> Use the provided Mathematica notebook to get a feel for the
random geometries produced by the various models (A, B, C, D).

> Gather data for (at least) one of the observables, and determine
estimates for the corresponding critical exponent (dy, ds or 7s) for
each of the models.

» Be creative: try to think of a different observable, perform data
analysis.
» Towards the end of the 2nd session: send me a brief summary of

your results (nice plots?). At the end | will discuss the models and
the data, and compare the latter to what we know.
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http://www.nbi.dk/~budd/randgeom/
> Use the provided Mathematica notebook to get a feel for the
random geometries produced by the various models (A, B, C, D).

> Gather data for (at least) one of the observables, and determine
estimates for the corresponding critical exponent (dy, ds or 7s) for
each of the models.

» Be creative: try to think of a different observable, perform data
analysis.
» Towards the end of the 2nd session: send me a brief summary of

your results (nice plots?). At the end | will discuss the models and
the data, and compare the latter to what we know.

(All models correspond to a different value of the central charge c. For some models and exponents
analytic results are available. One of the models has not been numerically investigated before!)


http://www.nbi.dk/~budd/randgeom/

