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» Review (Miermont's Lecture)

> Boltzmann planar maps

> Peeling exploration
> Relation between random walks on Z? and Boltzmann planar maps
» Rigid O(n) loop model on planar maps

> Peeling exploration
> Nesting of loops vs. winding of random walks
» Coding the O(2) model via lattice walks



Reminder: Boltzmann planar maps

» M, = {rooted, bipartite planar maps of perimeter 2p}.
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Reminder: Boltzmann planar maps

» M, = {rooted, bipartite planar maps of perimeter 2p}.
> For q = (q1,q2,...) > 0 define measure wq(m) = [, ceq 5 Goestn -
2

» q admissible iff W(P)(q) == wy(M,,) < oo for all p > 1.
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Reminder: Boltzmann planar maps

» M, = {rooted, bipartite planar maps of perimeter 2p}.
For g = (g1, g2, ...) > 0 define measure wo(m) = [[(,ceq f Geeatrs -
2

q admissible iff W(P)(q) := wq(M,) < oo for all p > 1.

If q is admissible then wq( - | M) defines the g-Boltzmann planar
map m(P) of perimeter 2p.
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Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

> Describe an exploration of m by a sequence ¢g C¢; C --- C m of
submaps containing holes (the unexplored regions).



Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

> Describe an exploration of m by a sequence ¢g C¢; C --- C m of
submaps containing holes (the unexplored regions).
> Fix a peeling algorithm to decide across which edge to explore next.
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Reminder: peeling exploration [Watabiki, Angel, Curien, Le Gall, TB, ...]

> Describe an exploration of m by a sequence ¢g C¢; C --- C m of
submaps containing holes (the unexplored regions).
> Fix a peeling algorithm to decide across which edge to explore next.

» For a g-Boltzmann planar map m = m(P), (e;) is a Markov process
with transition probabilities
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Transition probability:



Reminder: targeted peeling exploration

> |If the map m, has a marked vertex, one may track the hole
containing the vertex.
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Reminder: targeted peeling exploration

> |If the map m, has a marked vertex, one may track the hole
containing the vertex.
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» For a pointed q-Boltzmann planar map m

(.p)

Transition probability:
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Planar map editor: try for yourself!

&« C | ® hef.ru.nl/~tbudd/planarmap/examples/editor.html |-

v FILE
Load JSON or SVG...
H: Showlhide controls
Download JSON

Download SVG
Clear (single edge map)

» FORCE LAYOUT
» SELECTION

http://hef.ru.nl/~tbudd/planarmap/examples/editor.html


http://hef.ru.nl/~tbudd/planarmap/examples/editor.html

Reminder: perimeter process

> The perimeter process (P,) tracks the half-perimeter of the hole
containing the marked vertex.
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» The perimeter process (P,) tracks the half-perimeter of the hole
containing the marked vertex.

Reminder: perimeter process #

Fo=1 P=5 2 3 0
. Cec<§ C@ -
m,
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» If q admissible, (P,) has the law of a random walk (S,) with
distribution 14 conditioned to hit Z<g at O:

p(t, t+k) = Muq(k), hH(e) = 4~ (2;> va(K) = {qk+1 (4Rq)"

ht(€) 2W (k=1 (4R, )*




Wiener-Hopf factorization %

» Denote by (S=) the strict descending ladder process of (S,) and by
(5,2) the weak ascending ladder process.
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» Wiener-Hopf factorization (assuming So = 0):
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» Denote by (S=) the strict descending ladder process of (S,) and by

(5,2) the weak ascending ladder process.
» Wiener-Hopf factorization (assuming So = 0):

1— Eei951 _ (1 o Eei051<)(1 i Eei@slz)

> If (S,) hits Z<g at 0 with probability h*(p), then the same is true
for (S). This completely fixes the law of (5) to that of, say, (T;).




Wiener-Hopf factorization

» Denote by (S=) the strict descending ladder process of (S,) and by

(5,2) the weak ascending ladder process.
» Wiener-Hopf factorization (assuming So = 0):

1— Eei951 _ (1 o Eei051< )(1 . Eei@slz)
> If (S,) hits Z<g at 0 with probability h*(p), then the same is true

for (S). This completely fixes the law of (5) to that of, say, (T;).

Theorem (TB, '15)

The map q — vq is a bijection between admissible q and probability
distributions on Z for which (S°) @ (T7).
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Wiener-Hopf factorization %
() and by "

» Denote by (S=) the strict descending ladder process of

(5,2) the weak ascending ladder process.
» Wiener-Hopf factorization (assuming So = 0):

1— Eei951 _ (1 o Eei951<)(1 . Eei@slz)

> If (S,) hits Z<g at 0 with probability h*(p), then the same is true
for (S). This completely fixes the law of (5) to that of, say, (T;).

Theorem (TB, '15)

The map q — vq is a bijection between admissible q and probability
distributions on Z for which (S°) @ (T7).
Moreover, q is critical <= (S,) oscillates <~ (5,-2) non-defective.
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» (T;) is the unique strict descending random walk that hits Z<g at O = >
with probability h*(p) =2~ 2"(2") when started at p.



» (T;) is the unique strict descending random walk that hits Z<g at 045
with probability h*(p) = 272 (*) when started at p.

> (T) @ oxis intersections of a NW,SW random walk on 3Z2.




» (T;) is the unique strict descending random walk that hits Z<g at (bé—
with probability h*(p) = 272° (2;’) when started at p. ¢

> (T) @ oxis intersections of a NW,SW random walk on 3Z2.

» If =0, then (S5;) = (S57) @ (7).



» (T;) is the unique strict descending random walk that hits Z<g at =
with probability h*(p) = 272° (zlf) when started at p. ¢

> (T) @ axis intersections of a NW,SW random walk on 3Z2.

> If q =0, then (5;) = (5°) € (T)).
» One can get random walks (S;) for certain q # 0 by looking at axis
intersections of more general lattice walks on %ZQ.



» Consider a 2d random walk (X;, Y;) s.t. X; has i.i.d. increments in
Z+ % and Y; is an independent simple RW on 1Z.




» Consider a 2d random walk (X;, Y;) s.t. X; has i.i.d. increments in
Z+ % and Y; is an independent simple RW on 1Z.
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Proposition

The law of the sequence of axis intersections of (X:, Y;) is equal to that
of (S;) for some admissible q iff X;y1 — X¢ > —3 and (X;) # oc.




> Con5|der a 2d random walk (X¢, Y;) s.t. X; has i.i.d. increments in
Z+ % and Y; is an independent simple RW on 1Z.
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Proposition

The law of the sequence of axis intersections of (X:, Y;) is equal to that

of (S;) for some admissible q iff X;y1 — X¢ > —3 and (X;) # oc.

» Proof sketch: Inspired by [Bousquet-Mélou, Schaeffer, '02]
> Axis intersections of (X, Y:) are equal in law to (Xzr,)i.
» “Subordination by (T;) commutes with Wiener-Hopf factorization”.
1-Ee™n =\ /1—Ee = /(1 - B )(1 - Ee*F) \/1 — B \/1 Ee®%
> Thus statement holds iff (X;) has descendlng ladder process X;; = t.




Combinatorial explanation? Compare fragmentations |

» Consider the fragmentation induced by the peeling process of a
planar map (in the more general non-bipartite setting).
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Combinatorial explanation? Compare fragmentations

» Consider the fragmentation induced by the peeling process of a
planar map (in the more general non-bipartite setting).
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Combinatorial explanation? Compare fragmentations

» Consider the fragmentation induced by the peeling process of a
planar map (in the more general non-bipartite setting).
» The labeled tree unique characterizes the planar map (for fixed

peeling algorithm).
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Combinatorial explanation? Compare fragmentations
» Consider the fragmentation of an excursion in the upper-half plane.
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Combinatorial explanation? Compare fragmentations
» Consider the fragmentation of an excursion in the upper-half plane. |




Combinatorial explanation? Compare fragmentations
» Consider the fragmentation of an excursion in the upper-half plane.




Combinatorial explanation? Compare fragmentations #

» Consider the fragmentation of an excursion in the upper-half plane.
» Label de fragments by their extent.




Combinatorial explanation? Compare fragmentations &

» Consider the fragmentation of an excursion in the upper-half plane. %f/
» Label de fragments by their extent.
» Determine the maximal subtree with labels < —3 on inner nodes.

Binary tree
inner nodes < —3
leaf nodes > —2

!




Combinatorial explanation? Compare fragmentations %

|
Binary tree
inner nodes < —3

/\\j\ 1 leaf nodes > —2




Combinatorial explanation? Compare fragmentations %

Binary tree
inner nodes < —3
leaf nodes > —2

» Matching the trees determines a bijection between T-excursions of
extent —p — 2 and maps of perimeter p decorated with:
> an T-excursion of extent —2 for each vertex;
> an J-excursion of extent k — 2 for each face of degree k.






marked vertex IE\ )/\
I
AT

_/g,

iy -

» The bijection extends to walks on the slit plane and decorated planar
maps with a marked vertex or marked face.



Marked face of degree ¢ )\
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» The bijection extends to walks on the slit plane and decorated planar
maps with a marked vertex or marked face.




W

» Taking the image of a random walk (X:, Y;) and forgetting the
decoration yields a g-Boltzmann planar map, with 14 the axis-return
distribution of the walk.
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> The perimeter process (P;) corresponds to the axis intersections.



» Taking the image of a random walk (X:, Y;) and forgetting the
decoration yields a g-Boltzmann planar map, with 14 the axis-return
distribution of the walk.

> The perimeter process (P;) corresponds to the axis intersections.

» q is critical iff (X;) has no drift.
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Taking the image of a random walk (X:, Y;) and forgetting the
decoration yields a g-Boltzmann planar map, with 14 the axis-return
distribution of the walk.

The perimeter process (P;) corresponds to the axis intersections.

q is critical iff (X;) has no drift.

If (X¢) in dom. of attr. of an a-stable process for « € (1, 2], then
(S¢) is in dom. of attr. of an §-stable process with Lévy measure

1
O A sodx + ——1odx,  a=1+2¢ (2,2

xa |X‘a



A glimpse of loops
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A glimpse of loops
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A glimpse of loops



A glimpse of loops

2p

> A simple diagonal random walk (p,0) — (0,0) is mapped to a
g-Boltzmann planar map with signed, nested loops with distribution

xg I qe

reg. faces f

for some g and q as before.



A glimpse of loops

2p

» A simple diagonal random walk (p,0) — (0,0) is mapped to a
g-Boltzmann planar map with signed, nested loops with distribution

6" I quo

reg. faces f
for some g and q as before.

> The winding angle 0 of the walk (ignoring the last bit) is >, +.



Reminder: O(n) loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, Zinn-
Justin, Kristjansen ..., 70's-90’s]
> Let M, be the set of loop-decorated maps
of boundary 2p.
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Reminder: O(n) loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, Zinn-

Justin, Kristjansen ..., 70's-90’s]
> Let Mp be the set of loop-decorated maps
of boundary 2p.
» The rigid O(n) loop model corresponds to

the measure wj, g q( - | M), where
[Borot, Bouttier, Guitter, '11]

Wp,g,q(M) = "#%g#g H qdeg()

reg. faces f

» If (n, g,q) is admissible, the gasket of such

a map is distributed as a g-Boltzmann PM.
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Reminder: O(n) loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, Zinn-

Justin, Kristjansen ..., 70's-90’s]
> Let Mp be the set of loop-decorated maps
of boundary 2p.
» The rigid O(n) loop model corresponds to

the measure wj, g q( - | M), where
[Borot, Bouttier, Guitter, '11]

Wp,g,q(M) = "#%g#g H qdeg()

reg. faces f

» If (n, g,q) is admissible, the gasket of such

a map is distributed as a g-Boltzmann PM.

> (n,g,q) is critical iff q is.
(n, g,q) is non-generic iff the gasket
supports macroscopic faces.
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Reminder: O(n) loop model

[Stanley, Domany, Mukamel, Nienhuis, Kostov, Eynard, Zinn-
Justin, Kristjansen ..., 70's-90’s]
> Let M, be the set of loop-decorated maps
of boundary 2p.

» The rigid O(n) loop model corresponds to
the measure w, g (- |[M)), where
[Borot, Bouttier, Guitter, '11]

Wp,g,q(m) = "#%g#g H qaee(r)

reg. faces f
» If (n, g,q) is admissible, the gasket of such
a map is distributed as a g-Boltzmann PM.
> (n,g,q) is critical iff q is.
(n, g,q) is non-generic iff the gasket
supports macroscopic faces. o
: S N\
» For n € (0, 2] the non-generic scaling limits @sz
are conjecturally related to LQG, + CLE,, ’
n = —2cos(4n/K) \/ y

» Dense phase: k € [4,8), v = 1/16/k
> Dilute phase: k € (2,4], vy = vk

41(' =qr + nQZk w'n,g,q(Mp)



» The untargeted peeling is easy:
explore a q-BPM, and replace ol Perimeter & Nesting process
a new face by a loop with
appropriate probability.




Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with
appropriate probability.
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Targeted peeling exploration with loops

» The untargeted peeling is easy:

explore a q-BPM, and replace ol Perimeter & Nesting process
a new face by a loop with
appropriate probability. o

» Targeted exploration: o

» Discover new face.
» Discover new loop.
> Glue pair of edges.

» Track perimeter and # of Y2 3 4 s s 7 8 s 0w w2
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a new face by a loop with “l
appropriate probability. o

» Targeted exploration: o
» Discover new face. //Pi
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Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with
appropriate probability.
» Targeted exploration:
> Discover new face.
> Discover new loop.
> Glue pair of edges.
» Track perimeter and # of
loops crossed.
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Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with
appropriate probability.
» Targeted exploration:
> Discover new face.
» Discover new loop.
> Glue pair of edges.
» Track perimeter and # of
loops crossed.

10r

Perimeter & Nesting process
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Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with
appropriate probability.

o Perimeter & Nesting process

» Targeted exploration:

» Discover new face.
» Discover new loop.
> Glue pair of edges.

» Track perimeter and # of I A I R
loops crossed.



Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with
appropriate probability.

o Perimeter & Nesting process

» Targeted exploration:

> Discover new face.
» Discover new loop.
> Glue pair of edges.

> Track perimeter and # of IS S S S S N R
loops crossed.



Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with '
appropriate probability.

Perimeter & Nesting process

» Targeted exploration:
> Discover new face.
> Discover new loop.
> Glue pair of edges.

» Track perimeter and # of IS S A R I I R
loops crossed.



Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with '
appropriate probability.
» Targeted exploration:
» Discover new face.
> Discover new loop.
> Glue pair of edges.

Perimeter & Nesting process

> Track perimeter and # of TR
loops crossed.



Targeted peeling exploration with loops

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with '
appropriate probability.

Perimeter & Nesting process

» Targeted exploration:
» Discover new face.
» Discover new loop.
> Glue pair of edges.

» Track perimeter and # of IS S A R I I R
loops crossed.



Targeted peeling exploration with loops

ks

» The untargeted peeling is easy:
explore a §-BPM, and replace
a new face by a loop with '
appropriate probability.

Perimeter & Nesting process

» Targeted exploration:
» Discover new face.
» Discover new loop.
> Glue pair of edges.

» Track perimeter and # of IS S A R I I R
loops crossed.



Targeted peeling e

» The untargeted peeling is easy:

explore a §-BPM, and replace

a new face by a loop with
appropriate probability.
» Targeted exploration:

> Discover new face.
» Discover new loop.
> Glue pair of edges.

» Track perimeter and # of
loops crossed.

loration with loops

Perimeter & Nesting process




Targeted peeling exploration with loops

» The untargeted peeling is easy:
eprore a q—BPM, and replace o Perimeter & Nesting process
a new face by a loop with
appropriate probability.

» Targeted exploration:
» Discover new face.
» Discover new loop.
> Glue pair of edges.

» Track perimeter and # of
loops crossed.



Ricocheted random walk t&,1s-

> Let (S5;) be the random walk with law vjg.
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Ricocheted random walk t&,1s-

> Let (5;) be the random walk with law 4.

» For p = § € [0,1], define p-ricocheted random walk (5;):
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Ricocheted random walk (78,154

> Let (5;) be the random walk with law 4.

» For p = § € [0,1], define p-ricocheted random walk (5;):

> absorb in Z<o with probability 1 — p;
> ricochet to absolute value with probability p;

pe(0,1]
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Ricocheted random walk t&,1s-

4
> Let (S5;) be the random walk with law vjg. w
» For p = 2 € [0, 1], define p-ricocheted random walk (5;):
> absorb in Z.o with probability 1 — p;
> ricochet to absolute value with probability p;
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Ricocheted random walk t&,1s-

> Let (S5;) be the random walk with law vjg.

» For p = 2 € [0, 1], define p-ricocheted random walk (5;):
> absorb in Z.o with probability 1 — p;
> ricochet to absolute value with probability p;
> absorb at 0 with probability 1.
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Ricocheted random walk t&,1s-

> Let (S5;) be the random walk with law vjg.

» For p = 2 € [0, 1], define p-ricocheted random walk (5;):
> absorb in Z.o with probability 1 — p;
> ricochet to absolute value with probability p; Nir1 = N; 4+ 1;
> absorb at 0 with probability 1.
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Ricocheted random walk t&,1s-

> Let (S5;) be the random walk with law vjg.

» For p = 2 € [0, 1], define p-ricocheted random walk (5;):
> absorb in Z.o with probability 1 — p;
> ricochet to absolute value with probability p; Nir1 = N; 4+ 1;
> absorb at 0 with probability 1.

—

» If (q, g, n) non-generic critical: (P;, N;) @ (S, #ricochets)

conditioned to be absorbed at 0.
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Ricocheted random walk [rs,1s+] %

> Let (S5;) be the random walk with law vjg.

» For p = 2 € [0, 1], define p-ricocheted random walk (5;):
> absorb in Z.o with probability 1 — p;
> ricochet to absolute value with probability p; Nir1 = N; 4+ 1;
> absorb at 0 with probability 1.

—

» If (q, g, n) non-generic critical: (P;, N;) @ (S, #ricochets)

conditioned to be absorbed at 0.
» The law of nested loop lengths (¢;)Y; is independent of §!
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Theorem (TB,'18+)

Let n=2 and (n, g,q) non-generic critical and N the # nested loops
in the corresponding pointed map of boundary 2¢. Let 8) be the
winding angle of a random walk started at (2¢,0). Then

b
) 1 1-—
]E[ZN“)] _ E[elba(f)] =1 - Cosﬂb[xﬂ] (1 - i) , b= %arccosz.

For n € (0,2) this distribution is simply tilted by (’57)"’(2).




Theorem (TB,'18+)

Let n=2 and (n, g,q) non-generic critical and N the # nested loops
in the corresponding pointed map of boundary 2¢. Let 8) be the
winding angle of a random walk started at (2¢,0). Then

b
. 1 1-
]E[ZN“)] _ E[elbe(f)] == Cosﬂb[xﬂ] (1 - i) , b= 1Larccosz.

For n € (0,2) this distribution is simply tilted by (g)"’(z).

» More general results on nesting statistics of the O(n) loop model on
pIanar maps in [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17].
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Theorem (TB,'18+)

Let n=2 and (n, g,q) non-generic critical and N the # nested loops
in the corresponding pointed map of boundary 2¢. Let 8) be the
winding angle of a random walk started at (2¢,0). Then

b
. 1 1-
]E[sz] _ ]E[e,be(f)] == Cosﬂb[xﬂ] (1 - i) , b= 1Larccosz.

For n € (0,2) this distribution is simply tilted by (g)"’(z).

» More general results on nesting statistics of the O(n) loop model on
pIanar maps in [Borot, Bouttier, Duplantier, '16] [Chen, Curien, Maillard, '17].

> Inspired by this many more exact statistics of the winding of simple
random walks can be obtained [TB, '17]

V.
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» Consider a uniform loop of length 2/
on Z2.

» One may color each square according
to the total winding number of the
loop around it.

» What is the expected area of squares
with winding number n #£ 07

» |t can be expressed explicitly as [TB, '17]
42[
20\2
(%)

where g(k) is the nome of modulus k.

2g°" 12
— q4n 2mn?’

Z 2/
E[k ]1

> Reproduces result of the 2d Brownian
bridge as ¢ — oc.
[Garban, Trujillo-Ferreras,’06]
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» Miller's lecture: If you have a random map with a statistical model
coded (4 la mating of trees) by a random walk on Z? with
independent increments, then strong coupling with mated-CRT
maps allows one to import results from LQG, + SLE,. [Gwynne,
Holden, Sun, Miller, Sheffield]

> LQG\/S/—3 + SLEg: site-percolation on uniform triangulations <>
Kreweras walks [Bernardi, Holden, Sun, ...]

> LQG,; + SLEs: spanning-tree decorated maps <> simple random
walk [Mullin, Bernardi, Sheffield, ...]

> LQG\/473 + SLE12: bipolar-oriented maps [Kenyon, Miller, Sheffield,
Wilson, '15]

» LQG; + SLEis: Schnyder wood-decorated maps [Li, Sun, Watson, '17]

> Does the coding of maps by walks in this work provide an analogue
planar map model in the “limiting v = 2 universality class”?

» LQG2 + CLE4: O(2) loop model-decorated maps <+ simple random

walk on Z2777
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An T-excursion of extent —p — 2 encodes a planar map with
boundary length p with decoration.

Wish to mirror the J-excursion on a face of degree k, to describe
interior of a signed loop.

Need to shrink inner boundary of loop by 4 to make interior fit.
The result is a type of O(2) loop model-decorated map with
asymmetric loops.

Homework: find a nicer bijection that does not require asymmetric
loops and does not leave decoration on the vertices.

Homework*: extend to O(n), n € (0,2).



Thank you!
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» The winding angle © of random walks on Z? were only known
asymptotically: “hyperbolic secant laws"” [Rudnick, Hu, '87] [Bélisle, '89] [Shi,
98].

» An application:

Theorem (Discrete hyperbolic secant law [TB, '17])

The winding angle © around (—%, —%) of a simple random walk on Z?

shortly after a geometric random time with parameter k satisfies for

_ T 3
06—577'(',7,...,

PO € (a—F,a+ 3)|=csech(ta), c=ggg, 7= K(K:k_)"z).

geometric random tim:a>



