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» Surprising discrete analogue for SRW
started at (3, 3): if n, > 1 is geometric
with parameter p, then for a, b € Z:

1

P [9":3 € (a, b)] =G, Zf sech(mxT))

™
x=a+3

> T~ as p — 1. Reproduces ().

1
log(1—p)



Introduction: Gessel numbers

> In 2001 Ira Gessel conjectured the number
of walks with 2n steps € {N,S, SW, NE}
in the quadrant starting and ending at 0 to
be

0 (5/6)n(1/2)n _
16 NONGE 2,11,85,782, ...




Introduction: Gessel numbers

> In 2001 Ira Gessel conjectured the number
of walks with 2n steps € {N,S, SW, NE}
in the quadrant starting and ending at 0 to
be

0 (5/6)n(1/2)n _
16 NONGE 2,11,85,782, ...

> Turned out to be a notoriously difficult problem, but by now we

have. ..
> ...a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
> ...a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]

> ...an elementary (algebraic) proof. [Bousquet-Mélou, '15]



Introduction: Gessel numbers

> In 2001 Ira Gessel conjectured the number
of walks with 2n steps € {N,S, SW, NE}
in the quadrant starting and ending at 0 to
be

0 (5/6)n(1/2)n _
16 NONGE 2,11,85,782, ...
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have. ..
> ...a computer-aided proof. [Kauers, Koutschan, Zeilberger, '08]
> ...a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, '13]
> ...an elementary (algebraic) proof. [Bousquet-Mélou, '15]

» We will see that control of winding numbers provides an alternative
route.
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» Classical result: for bipartite maps the GF with marked vertex takes
a universal form (with pq a formal power series in g2, qa, .. .)

Wer0) _ (2P> (&q)”
p 4
» Same formula appears in GF's for lattice walks (2p,0) — (0,0) that
avoid negative half-axis (counted with factor t per step):
> not only “staircase walks” (p — 4t°) ...
> ...but whole class of walks on slit plane (p — some power series in

t). [Bousquet-Mélou, Schaeffer, '00]
. . . . 1—4/1-16t2
> in particular simple diagonal walks (p — Tt —1).
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» Such walks from (p,0) to (+/,0) with winding angle 6,, have GF
(p.). _ lwl qibu _ [P cos(mb)H
9 zW: te \/7 (I — cos(rb)H /

» But this also enumerates planar maps decorated with rigid loops
Carry|ng a We|ght n:= 2COS(7Tb) eaCh (and a redundant overall factor of n).
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» Rigid O(n) model: a planar map + disjoint
loops, that intersect solely quadrangles
through opposite sides. Enumerated with

Weight n#loopsg#loop faces H Gaegree

regular faces

> An exact solution of a closely related model was first obtained by
[Eynard, Kristjansen, '95] in terms of elliptic functions.

» Made more precise in [Borot, Eynard, '09], and in [Borot, Bouttier, Guitter, '11]
for this “rigid" setting.
> Recently in [Borot, Bouttier, Duplantier, '16] (in slightly different setting) €XaCt statistics

for the nesting of loops was obtained, i.e. distribution of # loops
surrounding a marked vertex/face.

» Importantly: suppressing loops that do not surround mark affects
GF's only through renormalization of q.
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» Adapting GF from [Borot, Bouttier, Duplantier, '16], setting n = 2 cos(mb) {Q
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Proposition (Diagonalization of )

H = UT Ay U in the sense of operators on (*(R) with

2
A, = diag [ —=—) , Unp =1/ ——P— [xP] cos(2rm v(x
I & <q’” + q"’)le "™\ m(gm — q™) b} eos( ()
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Application 1: hyperbolic secant law %‘

> Recall \/;(’HN)U enumerates walks lnp :
(1,0) — (£/,0) that alternate 0. T
between half-axes N times.

> Then =7 o5y 57 (HY = HV ),
enumerates all walks alternating I I
exactly N times.

ZtIWIeiﬂb(L%WH 1) _ 4tcos 7rb/2 ZcosN(Wb Z \[ HN Ny

— N>0 1>1
B 1 - i elﬂb(k+%) . cn(b K(4t)74t)
= 14z 2K(4t) = qk+% +q—k—% o 1— 4t

Theorem (Winding angle of SRW on Z? around (—1, 1))

If n, > 1 is a geometric RV with parameter 0 < p < 1 then
sech(m(k +3)T) _ K(v1-p?)
>_kez sech(m(k + %)T), K(p)

P [km < 6n, < (k+ 1)7] =
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Refinement: increase winding angle resolution

» Up to now: decomposed walk into
sequence of walks on slit plane.

» Why not decompose into walks on
half plane?

» Denote GF for half-plane walks
(p.0),...(0,%/) by \/ET,. Then

2H
I+H

1
HZEJQ(I+H), j:

. . 2
» Hence J has same eigenmodes as H but eigenvalues are e
instead of ﬁ Such an operation g — /q on elliptic functions

are well-known as “Landen transformations” .
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7

» This maps excursions 4-to-2 onto sequence of half-plane walks
(2,0),(1,£1),...(£1,£1),(0/£2,0/£2).
» Enumerated by

F(t,0) =2 (cos ()" 3 (1P /2(TV)pi

N>1 p,/>0



Winding angle of excursions
» Wish to enumerate excursions from origin

by length and winding angle:

F(t,b) := Z tlwlgb 0w

w

=482 4 (12 +4e P2 1 4e®P2)th 4. .

» Flip last step away from last axis
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» This maps excursions 4-to-2 onto sequence of half-plane walks
(2,0),(1,£1),...(£1,£1),(0/£2,0/£2).
» Enumerated by

F(t,0) =2 (cos ()" 3 (1P /2(TV)pi

N>1 p,1>0




Application 2: walks in cones
Theorem (Excursions in the ZF-cone.)

For integers m—n<p<m<n the GF for simple walks
(0,0),(1,0),...,(0,0) with winding angle &F staying strictly inside
angular region (EX7="g £4m 2 is

anp t) _ Z( —2I7TP _e_2iﬂm7k)F(t,%)
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Application 2: walks in cones
Theorem (Excursions in the 7F-cone.)

For integers m — n < p < m < n the GF for simple walks
(0,0),(1,0),...,(0,0) with winding angle & staying strictly inside
angular region (BX3="r, ”Tmﬂz is

i mk

1 'S —2im e —2jmr mk
Frmp(t) == EZ(E 2imE _ gm2m ) F(t, %)
k=1

(n,m,p) = (5,2,-1)
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Application 2: walks in cones (Gessel case)

» Special case: (n,m,p) =(3,2,0)
> Gessel-type walks returning to origin in
quadrant are enumerated by

1 1

—F00(t) = —
o 3,2,0(t) 2

SF(64)

v




Application 2: walks in cones (Gessel case)

» Special case: (n,m,p) =(3,2,0)
> Gessel-type walks returning to origin in
quadrant are enumerated by

1 1
t—2F3,2,0(t) ar —F(t, %)

1 V3 0y(%, /) 1]
2K(4t)01(3,\/_)
=1+2t>+11t* +85t% +

which is [OEIS sequence A135404]




Application 2: walks in cones (Gessel case)

» Special case: (n,m,p) =(3,2,0) /
> Gessel-type walks returning to origin in

quadrant are enumerated by

SFs20(t) = (5 3) ]
1 [ V3r 0(%,v4) 1] Z a4
~ 282 | 2K(41) 01(%, /)

— 1422+ 1164 + 8560 + - .. liW

which is [OEIS sequence A135404]

» But not obvious that this reproduces the known GF

ZR" 16" 5§ é%i) gltz lQFl( L —%;%;(4t)2) - 1],

nor that it is algebraic [Bostan, Kauers, '09].



Further questions

» Which generating functions are algebraic?

» Other walks with small steps?

» Why are some of the generating functions biperiodic and other ones
only quasi-biperiodic?

» Finally, here is an interpretation of the nome ¢ as function of the
elliptic modulus k. Why is it so simple?
(k)= lim P SRW on Z?2 reaches winding angle nr 1/n
A= M before geometric time with parameter k



