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Introduction: Hyperbolic secant law
I The winding angle θt of 2d Brownian

motion satisfies Spitzer’s law [Spitzer ’58]

2θt
log(t)

(d)−−−→
t→∞

Cauchy

I The winding angle θn of 2d random walk
satisfies hyperbolic secant law [Rudnick, Hu

’87] [Bélisle ’89]
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I Surprising discrete analogue for SRW
started at ( 1

2 ,
1
2 ): if np ≥ 1 is geometric

with parameter p, then for a, b ∈ Z:
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I Tp ∼ 1
log(1−p) as p → 1. Reproduces (∗).
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Introduction: Gessel numbers

I In 2001 Ira Gessel conjectured the number
of walks with 2n steps ∈ {N,S ,SW ,NE}
in the quadrant starting and ending at 0 to
be

16n (5/6)n(1/2)n
(2)n(5/3)n

= 2, 11, 85, 782, . . .

I Turned out to be a notoriously difficult problem, but by now we
have. . .

I . . . a computer-aided proof. [Kauers, Koutschan, Zeilberger, ’08]

I . . . a human (complex-analytic) proof. [Bostan, Kurkova, Raschel, ’13]

I . . . an elementary (algebraic) proof. [Bousquet-Mélou, ’15]

I We will see that control of winding numbers provides an alternative
route.
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Introduction: planar maps

I Planar map = rooted planar graph
embedded in R2 up to homeomorphisms.

I Generating function of maps with fixed
root face degree p:

W (p)({qi}) =
∑
maps

∏
faces f

qdegree(f )

I Similarly, let W (p,0) be GF of maps with a
marked vertex and W (p,l) for maps with a
marked face of degree l . (Root face and marked face

receive no weight!)
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Relation between maps and walks?
I Classical result: for bipartite maps the GF with marked vertex takes

a universal form (with ρq a formal power series in q2, q4, . . .)

W (2p,0) =

(
2p

p

)(ρq
4

)p

I Same formula appears in GF’s for lattice walks (2p, 0)→ (0, 0) that
avoid negative half-axis (counted with factor t per step):

I not only “staircase walks” (ρ→ 4t2) . . .
I . . . but whole class of walks on slit plane (ρ→ some power series in

t). [Bousquet-Mélou, Schaeffer, ’00]

I in particular simple diagonal walks (ρ→ 1−
√

1−16t2

8t2 − 1).
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Relation between maps and walks? Continued.
I The GF for quasi-bipartite maps with a marked face has an equally

universal form (see e.g. [Collet, Fusy, ’12])

W (p,l) =
1

l

2

p + l
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4

)(p+l)/2

α(l) :=
p!
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2 c!

I Up to factor of two (and ρ→ 1−
√

1−16t2

8t2 − 1) this also counts walks
on slit plane ending at (−l , 0).

Coincidence?
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2
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A bijective explanation
Proposition

For any step set S ⊂{−1, 0, 1, 2, . . .}×{−1, 0, 1}, there is a 2-to-1 map

Φ(p,l) : {S-walks (p, 0), · · · , (−l , 0) on slit plane}

−→

{
“S-walk-decorated maps” with root face degree p

and marked face degree l

}

I A S-walk-decorated map is a rooted planar map with a marked face
together with. . .

I for each face (except root or marked) of degree k an excursion
(0, 0), . . . , (k − 2, 0) above or below x-axis.

I for each vertex an excursion (0, 0), . . . , (−2, 0) above x-axis
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From walks to (rigid) loop-decorated maps

I Such walks from (p, 0) to (±l , 0) with winding angle θw have GF

G(p,l)
b :=

∑
w

t |w |e ibθw =
∞∑

N=1

(
e ibπ + e−ibπ

2

)N ∑
k1,...,kN−1≥1

H(p,k1)H(k1,k2) · · ·H(kN−1,l)

I But this also enumerates planar maps decorated with rigid loops
carrying a weight n := 2 cos(πb) each (and a redundant overall factor of n).
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Planar maps coupled to a rigid O(n) loop model

I Rigid O(n) model: a planar map + disjoint
loops, that intersect solely quadrangles
through opposite sides. Enumerated with

weight n#loopsg#loop faces
∏

regular faces

qdegree

I An exact solution of a closely related model was first obtained by
[Eynard, Kristjansen, ’95] in terms of elliptic functions.

I Made more precise in [Borot, Eynard, ’09], and in [Borot, Bouttier, Guitter, ’11]

for this “rigid” setting.

I Recently in [Borot, Bouttier, Duplantier, ’16] (in slightly different setting) exact statistics
for the nesting of loops was obtained, i.e. distribution of # loops
surrounding a marked vertex/face.

I Importantly: suppressing loops that do not surround mark affects
GF’s only through renormalization of q.
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I Adapting GF from [Borot, Bouttier, Duplantier, ’16], setting n = 2 cos(πb)
and computing a series representation:

Gb(x1, x2; t) :=
∑
p,l≥1

xp1 x
l
2 G

(p,l)
b

=
∑
p,l≥1

xp1 x
l
2

√
p

l

(
cos(πb)H

I − cos(πb)H

)
pl

= 4
∞∑

m=1

2 cos(πb)

qm + q−m − 2 cos(πb)

cos(2πmv(x2)) x1
∂
∂x1

cos(2πmv(x1))

m(q−m − qm)

where q = q(4t) is elliptic nome of modulus 4t and

v(x) := cd−1(−x/√ρ, ρ)/(4K (ρ)), ρ(t) =
1−
√

1− 16t2

8t2
− 1

Proposition (Diagonalization of H)

H = UT · Λq · U in the sense of operators on `2(R) with

Λq = diag

(
2

qm + q−m

)
m≥1

, Ump =

√
4p

m(q−m − qm)
[xp] cos(2πmv(x))
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Application 1: hyperbolic secant law

I Recall
√

p
l (HN)pl enumerates walks

(p, 0)→ (±l , 0) that alternate
between half-axes N times.

I Then 1
1−4t

∑
l≥1

1√
l
(HN)1,l

enumerates all walks alternating
≥N times.

∑
w

t |w |e iπb(b θwπ c+
1
2 ) =

4t cos(πb/2)

1− 4t

∑
N≥0

cosN(πb)
∑
l≥1

1√
l
(HN −HN+1)1,l

=
1

1− 4t

π

2K (4t)

∞∑
k=−∞

2e iπb(k+ 1
2 )

qk+ 1
2 + q−k−

1
2

=
cn(b K (4t), 4t)

1− 4t

Theorem (Winding angle of SRW on Z2 around (−1
2
, 1

2
))

If np ≥ 1 is a geometric RV with parameter 0 < p < 1 then

P
[
kπ < θnp < (k + 1)π

]
=

sech(π(k + 1
2 )T )∑

k∈Z sech(π(k + 1
2 )T )

, T =
K (
√

1− p2)

K (p)
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Refinement: increase winding angle resolution

I Up to now: decomposed walk into
sequence of walks on slit plane.

I Why not decompose into walks on
half plane?

I Denote GF for half-plane walks
(p, 0), . . . (0,±l) by

√
p
l Jpl . Then

H =
1

2
J 2(I +H), J =

√
2H

I +H

I Hence J has same eigenmodes as H but eigenvalues are 2
qm/2+q−m/2

instead of 2
qm+q−m . Such an operation q → √q on elliptic functions

are well-known as “Landen transformations”.
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Winding angle of excursions
I Wish to enumerate excursions from origin

by length and winding angle:

F (t, b) :=
∑
w

t |w |e ib θw

= 4t2 + (12 + 4e−ib
π
2 + 4e ib

π
2 )t4 + . . .

I Flip last step away from last axis
intersection, and first step oppositely.

I θw now measures angle to penultimate
axis intersection.

I This maps excursions 4-to-2 onto sequence of half-plane walks
(2, 0), (1,±1), . . . (±1,±1), (0/±2, 0/±2).

I Enumerated by

F (t, b) = 2
∑
N≥1

(
cos
(
πb
2

))N−1
[

(J N)22 −

√
4
2 (J N)42 +

√
6
2 (J N)62 − · · ·

]

= sec
(
πb
2

) [
1−

π tan
(
πb
4

)
2K (4t)

θ′1(πb4 ,
√
q)

θ1(πb4 ,
√
q)

]
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Application 2: walks in cones

Theorem (Excursions in the nπ
4

-cone.)

For integers m − n < p < m < n the GF for simple walks
(0, 0), (1, 0), . . . , (0, 0) with winding angle pπ

2 staying strictly inside

angular region ( p+m−n
4 π, p+m

4 π) is

Fn,m,p(t) :=
1

4n

n−1∑
k=1

(e−2iπ pk
n − e−2iπ mk

n )F
(
t, 4k

n

)

I Direct consequence of the
reflection principle.
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Application 2: walks in cones (Gessel case)

I Special case: (n,m, p) = (3, 2, 0)

I Gessel-type walks returning to origin in
quadrant are enumerated by

1

t2
F3,2,0(t) =

1

4t2
F (t, 4

3 )

=
1

2t2

[ √
3π

2K (4t)

θ′1(π3 ,
√
q)

θ1(π3 ,
√
q)
− 1

]
= 1 + 2t2 + 11t4 + 85t6 + · · ·

which is [OEIS sequence A135404]

I But not obvious that this reproduces the known GF

∞∑
n=0

t2n 16n (5/6)n(1/2)n
(2)n(5/3)n

=
1

2t2

[
2F1

(
− 1

2 ,−
1
6 ; 2

3 ; (4t)2
)
− 1

]
,

nor that it is algebraic [Bostan, Kauers, ’09].
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Further questions

I Which generating functions are algebraic?

I Other walks with small steps?

I Why are some of the generating functions biperiodic and other ones
only quasi-biperiodic?

I Finally, here is an interpretation of the nome q as function of the
elliptic modulus k. Why is it so simple?

q(k) = lim
n→∞

P
[

SRW on Z2 reaches winding angle nπ
before geometric time with parameter k

]1/n


